Effect of Obstruction Blockage Ratio in a Suddenly Expanded Micro-Combustor

2021 ◽  
pp. 407-415
Author(s):  
Arees Qamareen ◽  
Shah Shahood Alam ◽  
Mubashshir Ahmad Ansari
2013 ◽  
Vol 38 (26) ◽  
pp. 11438-11445 ◽  
Author(s):  
Aiwu Fan ◽  
Jianlong Wan ◽  
Yi Liu ◽  
Boming Pi ◽  
Hong Yao ◽  
...  

2021 ◽  
Vol 1080 (1) ◽  
pp. 012028
Author(s):  
Arees Qamareen ◽  
Shahood S Alam ◽  
Mubashshir A Ansari

Author(s):  
Roberta Fatima Neumeister ◽  
Adriane Prisco Petry ◽  
Sergio Viçosa Möller

2021 ◽  
Vol 11 (9) ◽  
pp. 3934
Author(s):  
Federico Lluesma-Rodríguez ◽  
Temoatzin González ◽  
Sergio Hoyas

One of the most restrictive conditions in ground transportation at high speeds is aerodynamic drag. This is even more problematic when running inside a tunnel, where compressible phenomena such as wave propagation, shock waves, or flow blocking can happen. Considering Evacuated-Tube Trains (ETTs) or hyperloops, these effects appear during the whole route, as they always operate in a closed environment. Then, one of the concerns is the size of the tunnel, as it directly affects the cost of the infrastructure. When the tube size decreases with a constant section of the vehicle, the power consumption increases exponentially, as the Kantrowitz limit is surpassed. This can be mitigated when adding a compressor to the vehicle as a means of propulsion. The turbomachinery increases the pressure of part of the air faced by the vehicle, thus delaying the critical conditions on surrounding flow. With tunnels using a blockage ratio of 0.5 or higher, the reported reduction in the power consumption is 70%. Additionally, the induced pressure in front of the capsule became a negligible effect. The analysis of the flow shows that the compressor can remove the shock waves downstream and thus allows operation above the Kantrowitz limit. Actually, for a vehicle speed of 700 km/h, the case without a compressor reaches critical conditions at a blockage ratio of 0.18, which is a tunnel even smaller than those used for High-Speed Rails (0.23). When aerodynamic propulsion is used, sonic Mach numbers are reached above a blockage ratio of 0.5. A direct effect is that cases with turbomachinery can operate in tunnels with blockage ratios even 2.8 times higher than the non-compressor cases, enabling a considerable reduction in the size of the tunnel without affecting the performance. This work, after conducting bibliographic research, presents the geometry, mesh, and setup. Later, results for the flow without compressor are shown. Finally, it is discussed how the addition of the compressor improves the flow behavior and power consumption of the case.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2096
Author(s):  
Joon Ahn ◽  
Jeong Chul Song ◽  
Joon Sik Lee

Large eddy simulations are performed to analyze the conjugate heat transfer of turbulent flow in a ribbed channel with a heat-conducting solid wall. An immersed boundary method (IBM) is used to determine the effect of heat transfer in the solid region on that in the fluid region in a unitary computational domain. To satisfy the continuity of the heat flux at the solid–fluid interface, effective conductivity is introduced. By applying the IBM, it is possible to fully couple the convection on the fluid side and the conduction inside the solid and use a dynamic subgrid scale model in a Cartesian grid. The blockage ratio (e/H) is set at 0.1, which is typical for gas turbine blades. Through conjugate heat transfer analysis, it is confirmed that the heat transfer peak in front of the rib occurs because of the impinging of the reattached flow and not the influence of the thermal boundary condition. When the rib turbulator acts as a fin, its efficiency and effectiveness are predicted to be 98.9% and 8.32, respectively. When considering conjugate heat transfer, the total heat transfer rate is reduced by 3% compared with that of the isothermal wall. The typical Biot number at the internal cooling passage of a gas turbine is <0.1, and the use of the rib height as the characteristic length better represents the heat transfer of the rib.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michael Joon Seng Goh ◽  
Yeong Shiong Chiew ◽  
Ji Jinn Foo

AbstractA net immersed in fractal-induced turbulence exhibit a transient time-varying deformation. The anisotropic, inhomogeneous square fractal grid (SFG) generated flow interacts with the flexible net to manifest as visible cross-sectional undulations. We hypothesize that the net’s response may provide a surrogate in expressing local turbulent strength. This is analysed as root-mean-squared velocity fluctuations in the net, displaying intensity patterns dependent on the grid conformation and grid-net separation. The net’s fluctuation strength is found to increase closer to the turbulator with higher thickness ratio while presenting stronger fluctuations compared to regular-square-grid (RSG) of equivalent blockage-ratio, σ. Our findings demonstrate a novel application where 3D-reconstruction of submerged nets is used to experimentally contrast the turbulence generated by RSG and multilength scale SFGs across the channel cross-section. The net’s response shows the unique turbulence developed from SFGs can induce 9 × higher average excitation to a net when compared against RSG of similar σ.


Sign in / Sign up

Export Citation Format

Share Document