Characterization of Shredded Waste Plastic on Warm Stone Mastic Asphalt

Author(s):  
Khalida Muntasher ◽  
Shivaraj Halyal
2012 ◽  
Vol 34 ◽  
pp. 236-242 ◽  
Author(s):  
Taher Baghaee Moghaddam ◽  
Mohamed Rehan Karim ◽  
Tamalkhani Syammaun

2021 ◽  
Vol 11 (21) ◽  
pp. 9971
Author(s):  
João Crucho ◽  
José Neves

Hydrotalcite, a type of layered double hydroxide (LDH), reveals an interesting potential for the modification of bitumen. The LDH can induce a barrier effect that prevents the loss of volatiles, retards oxidation, and protects against ultraviolet radiation. Such properties can enhance the aging resistance of the bitumen. However, there is a gap in knowledge regarding the effects of the modification with hydrotalcite in the properties of the asphalt mixture. To contribute to fill such a gap, the current study presents a characterization of the effects of the modification with nano hydrotalcite in the surface characteristics, mechanical performance, and aging resistance of an asphalt mixture. To better explore the effects of the modification, the selected asphalt mixture was a high binder content (7.5%) Stone Mastic Asphalt (SMA). The experimental study indicates that the binder-rich SMA presented adequate performance for application in surface courses. If compared to conventional mixtures, the binder-rich SMA presented better initial mechanical performance (unaged conditions). Furthermore, it presented smaller variation in the parameters between unaged and aged conditions, indicating enhanced aging resistance. The modification with nano hydrotalcite induced smaller evolution in the fatigue resistance parameters, indicating enhanced aging resistance; however, in the remaining tests, the trends were not clear.


2011 ◽  
Vol 32 (10) ◽  
pp. 4844-4849 ◽  
Author(s):  
Esmaeil Ahmadinia ◽  
Majid Zargar ◽  
Mohamed Rehan Karim ◽  
Mahrez Abdelaziz ◽  
Payam Shafigh

Author(s):  
Sajjad Noura ◽  
Abdulnaser M. Al-Sabaeei ◽  
Gailan Ismat Safaeldeen ◽  
Ratnasamy Muniandy ◽  
Alan Carter

Author(s):  
Imad L. Al-Qadi ◽  
Zhen Leng ◽  
Jongeun Baek ◽  
Hao Wang ◽  
Matthew Doyen ◽  
...  

Author(s):  
Ekarizan Shaffie ◽  
◽  
H.A. Rashid ◽  
Fiona Shiong ◽  
Ahmad Kamil Arshad ◽  
...  

Stone Mastic Asphalt (SMA) is a gap-graded hot mixture designed to provide higher resistance towards permanent deformation and rutting potential by 30% to 40% more than dense-graded asphalt, due to its stable aggregate skeleton structure. However, compared to other types of hot mix asphalt, SMA unfortunately has some shortcomings in term of its susceptibility towards moisture-induced damage due to its structure and excessive bitumen content in the composition. This research aims to assess the performance of a SMA mixture with steel fiber by enhancing overall stability, abrasion resistance, and, most importantly, moisture susceptibility. This study involved the incorporation of various steel fiber proportions of 0%, 0.3%, 0.5% and 0.7% by the total weight of mixture. The steel fiber modified SMA was made up of 6.0% PEN 60/70 bitumen content. The performance of SMA were evaluated through Marshall stability and flow test, Cantabro loss test and indirect tensile strength test. The results obtained from the testing showed that the incorporation of steel fiber is significantly effective to enhance the resistance towards moisture damage, while increasing the stability and reducing the abrasion loss of SMA mixture, compared to conventional mixture. Overall, it can be concluded that the addition of steel fiber in asphalt mixture specifically SMA, has improved the mechanical performance in the application of asphalt pavement with the optimum steel fiber proportion of 0.3% by the weight of mixture. The developed models between the independent variables and responses demonstrated high levels of correlation. The study found that Response Surface Methodology (RSM) is an effective statistical method for providing an appropriate empirical model for relating parameters and predicting the optimum performance of an asphaltic mixture to reduce flexible pavement failure.


Sign in / Sign up

Export Citation Format

Share Document