Optical Constants of BiI3 Polycrystalline Thin Films with Potential Applications in X-ray Detectors and Photovoltaic Cell

2021 ◽  
pp. 115-122
Author(s):  
Alka Garg ◽  
Monika Tomar ◽  
Vinay Gupta
Author(s):  
D J H Cockayne ◽  
D R McKenzie

The study of amorphous and polycrystalline materials by obtaining radial density functions G(r) from X-ray or neutron diffraction patterns is a well-developed technique. We have developed a method for carrying out the same technique using electron diffraction in a standard TEM. It has the advantage that studies can be made of thin films, and on regions of specimen too small for X-ray and neutron studies. As well, it can be used to obtain nearest neighbour distances and coordination numbers from the same region of specimen from which HREM, EDS and EELS data is obtained.The reduction of the scattered intensity I(s) (s = 2sinθ/λ ) to the radial density function, G(r), assumes single and elastic scattering. For good resolution in r, data must be collected to high s. Previous work in this field includes pioneering experiments by Grigson and by Graczyk and Moss. In our work, the electron diffraction pattern from an amorphous or polycrystalline thin film is scanned across the entrance aperture to a PEELS fitted to a conventional TEM, using a ramp applied to the post specimen scan coils. The elastically scattered intensity I(s) is obtained by selecting the elastically scattered electrons with the PEELS, and collecting directly into the MCA. Figure 1 shows examples of I(s) collected from two thin ZrN films, one polycrystalline and one amorphous, prepared by evaporation while under nitrogen ion bombardment.


2019 ◽  
Vol 14 (29) ◽  
pp. 55-72
Author(s):  
Bushra A. Hasan

Alloys of InxSe1-x were prepared by quenching technique withdifferent In content (x=10, 20, 30, and 40). Thin films of these alloyswere prepared using thermal evaporation technique under vacuum of10-5 mbar on glass, at room temperature R.T with differentthicknesses (t=300, 500 and 700 nm). The X–ray diffractionmeasurement for bulk InxSe1-x showed that all alloys havepolycrystalline structures and the peaks for x=10 identical with Se,while for x=20, 30 and 40 were identical with the Se and InSestandard peaks. The diffraction patterns of InxSe1-x thin film showthat with low In content (x=10, and 20) samples have semicrystalline structure, The increase of indium content to x=30decreases degree of crystallinity and further increase of indiumcontent to x=40 leads to convert structure to amorphous. Increase ofthickness from 300 to 700nm increases degree of crystallinity for allindium content. Transmittance measurements were used to calculaterefractive index n and the extinction coefficient k using Swanepole’smethod. The optical constants such as refractive index (n), extinctioncoefficient (k) and dielectric constant (εr, εi) increases for low indiumcontent samples and decreases for high indium content samples,while increase of thickness increases optical constants for all xvalues. The oscillator energy E0, dispersion energy Ed, and otherparameters have been determined by Wemple - DiDomenico singleoscillator approach.


1988 ◽  
Vol 32 ◽  
pp. 311-321 ◽  
Author(s):  
R.A. Larsen ◽  
T.F. McNulty ◽  
R.P. Goehner ◽  
K.R. Crystal

AbstractThe use of conventional θ/2θ diffraction methods for the characterization of polycrystalline thin films is not in general a satisfactory technique due to the relatively deep penetration of x-ray photons in most materials. Glancing incidence diffraction (GID) can compensate for the penetration problems inherent in the θ/2θ geometry. Parallel beam geometry has been developed in conjunction with GID to eliminate the focusing aberrations encountered when performing these types of measurements. During the past yearwe developed a parallel beam attachment which we have successfully configured to a number of systems.


1997 ◽  
Vol 12 (3) ◽  
pp. 651-656 ◽  
Author(s):  
P. K. Nair ◽  
L. Huang ◽  
M. T. S. Nair ◽  
Hailin Hu ◽  
E. A. Meyers ◽  
...  

Formation of the ternary compound Cu3BiS3 during annealing of chemically deposited CuS (∼0.3 μm) films on Bi2S3 film (∼0.1 μm on glass substrate) is reported. The interfacial atomic diffusion leading to the formation of the compound during the annealing is indicated in x-ray photoelectron depth profile spectra of the films. The formation of Cu3BiS3 (Wittichenite, JCPDS 9-488) is confirmed by the x-ray diffraction (XRD) patterns. The films are optically absorbing in the entire visible region (absorption coefficient 4 × 104 cm−1 at 2.48 eV or 0.50 μm) and are p-type with electrical conductivity of 102−103 Ω−1 cm−1. Potential applications of these films as optical coatings in the control of solar energy transmittance through glazings and as a p-type absorber film in solar cell structures are indicated.


2008 ◽  
Vol 1139 ◽  
Author(s):  
Klaus Martinschitz ◽  
Rostislav Daniel ◽  
Christian Mitterer ◽  
Keckes Jozef

AbstractA new X-ray diffraction technique to determine elastic moduli of polycrystalline thin films deposited on monocrystalline substrates is demonstrated. The technique is based on the combination of sin2ψ and X-ray diffraction wafer curvature techniques which are used to characterize X-ray elastic strains and macroscopic stress in thin film. The strain measurements must be performed for various hkl reflections. The stresses are determined from the substrate curvature applying the Stoney's equation. The stress and strain values are used to calculate hkl reflection dependent X-ray elastic moduli. The mechanical elastic moduli can be then extrapolated from X-ray elastic moduli considering film macroscopic elastic anisotropy. The derived approach shows for which reflection and corresponding value of the X-ray anisotropic factor Γ the X-ray elastic moduli are equal to their mechanical counterparts in the case of fibre textured cubic polycrystalline aggregates. The approach is independent of the crystal elastic anisotropy and depends on the fibre texture type, the texture sharpness, the amount of randomly oriented crystallites and on the supposed grain interaction model. The new method is demonstrated on a fiber textured Cu thin film deposited on monocrystalline Si(100) substrate. The advantage of the new technique remains in the fact that moduli are determined non-destructively, using a static diffraction experiment and represent volume averaged quantities.


2012 ◽  
Vol 510-511 ◽  
pp. 156-162 ◽  
Author(s):  
G.H. Tariq ◽  
M. Anis-ur-Rehman

Polycrystalline thin films of Cadmium Sulfide (CdS) have been extensively studied for application as a window layer in CdTe/CdS and CIGS/CdS thin film solar cells. Higher efficiency of solar cells is possible by a better conductivity of a window layer, which can be achieved by doping these films with suitable elements. CdS thin films were deposited on properly cleaned glass substrate by thermal evaporation technique under vacuum2×10-5mbar. Films were structurally characterized by using X-ray diffraction. The X-ray diffraction spectra showed that the thin films were polycrystalline in nature. Aluminum was doped chemically in as deposited and annealed thin films by immersing films in AlNO33.9H2O solutions respectively. Comparison between the effects of different doping ratios on the structural and optical properties of the films was investigated. Higher doping ratios have improved the electrical properties by decreasing the resistivity of the films and slightly changed the bandgap energy Eg. The grain size, strain, and dislocation density were calculated for as-deposited and annealed films.


2015 ◽  
Vol 591 ◽  
pp. 215-218 ◽  
Author(s):  
S. Daniš ◽  
Z. Matĕj ◽  
L. Matĕjová ◽  
M. Krupka

2020 ◽  
Vol 71 (7) ◽  
pp. 272-277
Author(s):  
Rovena Veronica Pascu

The cubic structure 8YSZ (8%Yttria-Stabilized Zirconia) thin films deposited by PLD(Pulsed Laser Deposition) on substrates Si (100) and Pt/Si (111) by identical control parameters have potential applications as electrolytes for planar micro electrochemical devices like Lambda oxygen sensors and IT-�SOFC. It appearance differences in polycrystalline structural and optical characterization by XRD (X-ray Diffraction), SEM (Scanning Electron Microscope), AFM (Atomic Force Microscopy) and V- VASE (Variable Angle Spectroscopic Ellipsometry. The differences are relating on crystalline dimensions, lattice parameters; surface roughness measured by V- VASE and AFM are presented synthetic to evidence the differences generated by substrates.


Author(s):  
J.P. Goral ◽  
M.M. Al-Jassim ◽  
D. Albin ◽  
J.R. Tuttle ◽  
R. Noufi

Polycrystalline thin films of CuInSe2 and CuGaSe2 are currently being developed as low-cost photovoltaic devices. These films are vacuum-deposited onto molybdenum metallized alumina substrates. The film composition may be varied by manipulation of the deposition parameters. For photovoltaic applications, the desired phase has a stoichiometry close to CuInSe2. This compound is a zincblende variant, the cations and anions occupying separate fcc sublattices. Under certain growth conditions, the Cu and In atoms adopt an ordered configuration within the cationic sublattice resulting in the tetragonal chalcopyrite structure. Even when the deposition parameters are manipulated to produce nominally stoichiometric films, powder x-ray traces often exhibit anomalous peaks indicative of the presence of impurity phases. The identification of these minority phases by x-ray diffraction alone is not possible in this materials system due to low peak intensity and overlap considerations. The formation of the secondary phases has a detrimental effect on the electrical and optical properties of the thin film device.


Sign in / Sign up

Export Citation Format

Share Document