Multi-time Scale Transactive Scheduling of TCLs for Smoothing Microgrid Tie Flow Fluctuations

2021 ◽  
pp. 235-260
Author(s):  
Meng Song ◽  
Ciwei Gao
Keyword(s):  
2018 ◽  
Vol 211 ◽  
pp. 02012
Author(s):  
R Magu Raam Prasaad ◽  
J Venkatramani

Aeroelastic systems with freeplay nonlinearity can exhibit a wide variety of qualitatively different dynamical responses such as limit cycle oscillations and chaos in the pre-flutter regimes. Consequently, the bifurcation scenario in an aeroelastic system with freeplay nonlinearity under uniform flows have received considerable attention in the literature. However, in reality flows are far from deterministic and often possess a small temporal random fluctuations about a mean value. Input flow fluctuations have the potential to alter the stability and give rise to atypical routes to flutter. Indeed, recent studies have shown that under flow fluctuations the aeroelastic systems loses its stability via a regime of oscillations called intermittency. Further, it is observed that the presence of cubic hardening nonlinearity and input flow fluctuations with predominantly long time scales can give rise to “on-off” type intermittency. This dynamical behaviour is attributed to type of nonlinearity and relatively short time scale for the system to stay and exhibit distinct dynamics. Extending the mechanism of intermittency route to flutter in aeroelastic systems with other prominent types of nonlinearities, such as, freeplay have however, received minimal attention in the literature. The present study devotes itself to investigate the response dynamics of an airfoil with freeplay nonlinearity subjected to long time scale input flow fluctuations.


2016 ◽  
Vol 31 (35) ◽  
pp. 1650197 ◽  
Author(s):  
P. S. Saumia ◽  
Ajit M. Srivastava

We carry out hydrodynamical simulation of the evolution of fluid in relativistic heavy-ion collisions with random initial fluctuations. The time evolution of power spectrum of momentum anisotropies shows very strong correspondence with the physics of cosmic microwave anisotropies as was earlier predicted by us. In particular, our results demonstrate suppression of superhorizon fluctuations and the correspondence between the location of the first peak in the power spectrum of momentum anisotropies and the length scale of fluctuations and expected freeze-out time-scale (more precisely, the sound horizon size at freeze-out).


2000 ◽  
Vol 179 ◽  
pp. 205-208
Author(s):  
Pavel Ambrož ◽  
Alfred Schroll

AbstractPrecise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.


1984 ◽  
Vol 75 ◽  
pp. 599-602
Author(s):  
T.V. Johnson ◽  
G.E. Morfill ◽  
E. Grun

A number of lines of evidence suggest that the particles making up the E-ring are small, on the order of a few microns or less in size (Terrile and Tokunaga, 1980, BAAS; Pang et al., 1982 Saturn meeting; Tucson, AZ). This suggests that a variety of electromagnetic and plasma affects may be important in considering the history of such particles. We have shown (Morfill et al., 1982, J. Geophys. Res., in press) that plasma drags forces from the corotating plasma will rapidly evolve E-ring particle orbits to increasing distance from Saturn until a point is reached where radiation drag forces acting to decrease orbital radius balance this outward acceleration. This occurs at approximately Rhea's orbit, although the exact value is subject to many uncertainties. The time scale for plasma drag to move particles from Enceladus' orbit to the outer E-ring is ~104yr. A variety of effects also act to remove particles, primarily sputtering by both high energy charged particles (Cheng et al., 1982, J. Geophys. Res., in press) and corotating plasma (Morfill et al., 1982). The time scale for sputtering away one micron particles is also short, 102 - 10 yrs. Thus the detailed particle density profile in the E-ring is set by a competition between orbit evolution and particle removal. The high density region near Enceladus' orbit may result from the sputtering yeild of corotating ions being less than unity at this radius (e.g. Eviatar et al., 1982, Saturn meeting). In any case, an active source of E-ring material is required if the feature is not very ephemeral - Enceladus itself, with its geologically recent surface, appears still to be the best candidate for the ultimate source of E-ring material.


2020 ◽  
pp. 35-38
Author(s):  
S.I. Donchenko ◽  
I.Y. Blinov ◽  
I.B. Norets ◽  
Y.F. Smirnov ◽  
A.A. Belyaev ◽  
...  

The latest changes in the algorithm for the formation of the international atomic time scale TAI are reported in terms of estimating the weights of the clocks involved in the formation of TAI. Studies of the characteristics of the long-term instability of new-generation hydrogen masers based on processing the results of the clock frequency difference with respect to TAI are performed. It has been confirmed that at present, new-generation hydrogen masers show significantly less long-term instability in comparison with quantum frequency standards ofsimilar and other types.


2018 ◽  
Vol 138 (8) ◽  
pp. 354-355
Author(s):  
Aya Fujita ◽  
Sho Kitabatake ◽  
Kazuko Yamagishi ◽  
Shuji Fujita

Sign in / Sign up

Export Citation Format

Share Document