Evaluation of Side Wall Roughness and Material Removal Rate in Vibration Assisted Powder Mixed Micro-EDM Drilling on Inconel 718

Author(s):  
Deepak G. Dilip ◽  
Satyananda Panda ◽  
Jose Mathew
Author(s):  
Leonardo Orazi ◽  
Gabriele Cuccolini ◽  
Giovanni Tani

In this paper a system for the automatic determination of the material removal rate during laser milling process is presented. “Laser milling” can be defined as an engraving process with a strictly controlled penetration depth. In industrial applications, when a new material have to be machined or a change in the system set-up occur the user has to perform a time-consuming experimental campaign in order to determine the correlation between the material removal rate and the process parameters. In these cases the numerical models present some limits due to the elevated calculation time requested to simulate the laser milling of industrial features. In the proposed system, based on a regression model approach, the empirical coefficients, that provide the material removal rate, are automatically generated by a specific software according to the different materials that have to be processed. A description of the automated method and the results obtained in engraving TiAl6V4 and Inconel 718 superalloy with a fiber laser are presented. The system can be adapted to every combination of material/laser source.


2011 ◽  
Vol 264-265 ◽  
pp. 1450-1455 ◽  
Author(s):  
Gunawan Setia Prihandana ◽  
Tutik Sriani ◽  
Kei Prihandana ◽  
Yuta Prihandana ◽  
Muslim Mahardika ◽  
...  

The application of powder mixed dielectric to improve the efficiency of electrical discharge machining (EDM) has been acknowledged extensively. However, the study of micro-size powder suspension in micro-EDM field is still limited. In this research, nano and micro size powder of MoS2 were used as catalyst agent. Powder suspension in different size was able to provide significant improvement in material removal rate and surface quality to increase the efficiency in μ- EDM processes.


2015 ◽  
Vol 1115 ◽  
pp. 20-23
Author(s):  
Banu Asfana ◽  
Mohammad Yeakub Ali ◽  
Abdul Rahman Mohamed ◽  
Wayne N.P. Hung

This paper investigates the material removal rate (MRR) in electro discharge micromachining (micro-EDM) of zirconia. Experimental investigation is carried out with 800 μm diameter tungsten electrode with two varying parameters rotational speed and gap voltage. The MRR data are analyzed and an empirical model is developed using Design Expert software. The optimum parameters for maximum MRR are found to be 375 rpm rotational speed and 80 V gap voltage.


2020 ◽  
Vol 27 (11) ◽  
pp. 2050001
Author(s):  
PADMAJA TRIPATHY ◽  
KALIPADA MAITY

In this paper, the effect of cutting parameters during micromilling on surface finish and material removal rate is presented. Inconel 718 alloy and high-speed steel micro end mill are used as work material and cutting tool, respectively. High-speed steel end mill of 1 mm diameter is subjected to cryogenic treatment. Machining studies are performed on Inconel alloy using untreated and cryogenic treated cutters. The milling tests are conducted at three different values of feed rate, cutting speed and depth of cut. Also, tool wear, microstructure and microhardness of different treated and untreated end mill are investigated and discussed in detail. The results showed that cryogenic treatment significantly improved the tool wear. The surface finish produced on machining the work-piece is better with the cryogenic treated tools than when compared with the untreated tools. The material removal rate is better with the cryogenic treated tools than when compared with the untreated tools. Improvement in tool life was up to 53.16% for Inconel 718 material when machined with cryogenically treated micro end mill.


Sign in / Sign up

Export Citation Format

Share Document