Dielectric Pocket (DP) Based Channel Region of the Junction-Less Dual Material Double Gate (JLDMDG) MOSFET for Enhanced Analog/RF Performance

Author(s):  
Amrish Kumar ◽  
Abhinav Gupta ◽  
Sanjeev Rai
NANO ◽  
2016 ◽  
Vol 11 (10) ◽  
pp. 1650117 ◽  
Author(s):  
Arpan Dasgupta ◽  
Rahul Das ◽  
Shramana Chakraborty ◽  
Arka Dutta ◽  
Atanu Kundu ◽  
...  

The paper reports a comparative analysis between the dual material gate double gate (DMG-DG) nMOSFET and the tri material gate double gate (TMG-DG) nMOSFET in terms of their analog and RF performance. Three different devices having the DMG-DG structure have been considered. Each of the devices have different higher workfunction material gate length (L1) to lower workfunction material gate length (L2) ratio (L1:L2). Along with the three devices, the performance of the TMG-DG nMOSFET is compared. The analog parameters considered for the comparison are the drain current ([Formula: see text]), the transconductance ([Formula: see text]), the transconductance generation factor ([Formula: see text]/[Formula: see text]) and the intrinsic gain ([Formula: see text]Ro). The drain induced barrier lowering (DIBL) of the devices is compared. The RF analysis is performed using the non quasi static (NQS) approach. We consider the intrinsic gate to source capacitances ([Formula: see text]), the intrinsic gate to drain capacitance ([Formula: see text]), the intrinsic gate to source resistances ([Formula: see text]), the intrinsic gate to drain resistance ([Formula: see text]), the transport delay ([Formula: see text]), the unity current gain cut-off frequency ([Formula: see text]) and the max frequency of oscillation ([Formula: see text]) for the RF comparisons. A single stage amplifier is also implemented using the devices for a circuit comparison.


Sign in / Sign up

Export Citation Format

Share Document