Highway Network Traffic Survey Point Layout Planning Method Based on Machine Learning-Optimization Hybrid Algorithm

Author(s):  
Liting Shi
Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1761
Author(s):  
Hanan Hindy ◽  
Robert Atkinson ◽  
Christos Tachtatzis ◽  
Ethan Bayne ◽  
Miroslav Bures ◽  
...  

Cyber-attacks continue to grow, both in terms of volume and sophistication. This is aided by an increase in available computational power, expanding attack surfaces, and advancements in the human understanding of how to make attacks undetectable. Unsurprisingly, machine learning is utilised to defend against these attacks. In many applications, the choice of features is more important than the choice of model. A range of studies have, with varying degrees of success, attempted to discriminate between benign traffic and well-known cyber-attacks. The features used in these studies are broadly similar and have demonstrated their effectiveness in situations where cyber-attacks do not imitate benign behaviour. To overcome this barrier, in this manuscript, we introduce new features based on a higher level of abstraction of network traffic. Specifically, we perform flow aggregation by grouping flows with similarities. This additional level of feature abstraction benefits from cumulative information, thus qualifying the models to classify cyber-attacks that mimic benign traffic. The performance of the new features is evaluated using the benchmark CICIDS2017 dataset, and the results demonstrate their validity and effectiveness. This novel proposal will improve the detection accuracy of cyber-attacks and also build towards a new direction of feature extraction for complex ones.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1578
Author(s):  
Daniel Szostak ◽  
Adam Włodarczyk ◽  
Krzysztof Walkowiak

Rapid growth of network traffic causes the need for the development of new network technologies. Artificial intelligence provides suitable tools to improve currently used network optimization methods. In this paper, we propose a procedure for network traffic prediction. Based on optical networks’ (and other network technologies) characteristics, we focus on the prediction of fixed bitrate levels called traffic levels. We develop and evaluate two approaches based on different supervised machine learning (ML) methods—classification and regression. We examine four different ML models with various selected features. The tested datasets are based on real traffic patterns provided by the Seattle Internet Exchange Point (SIX). Obtained results are analyzed using a new quality metric, which allows researchers to find the best forecasting algorithm in terms of network resources usage and operational costs. Our research shows that regression provides better results than classification in case of all analyzed datasets. Additionally, the final choice of the most appropriate ML algorithm and model should depend on the network operator expectations.


2021 ◽  
Vol 1964 (6) ◽  
pp. 062008
Author(s):  
K Gunasekaran ◽  
Radhika Baskar ◽  
R Dhanagopal ◽  
K Elangovan

Information ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 233 ◽  
Author(s):  
Zuleika Nascimento ◽  
Djamel Sadok

Network traffic classification aims to identify categories of traffic or applications of network packets or flows. It is an area that continues to gain attention by researchers due to the necessity of understanding the composition of network traffics, which changes over time, to ensure the network Quality of Service (QoS). Among the different methods of network traffic classification, the payload-based one (DPI) is the most accurate, but presents some drawbacks, such as the inability of classifying encrypted data, the concerns regarding the users’ privacy, the high computational costs, and ambiguity when multiple signatures might match. For that reason, machine learning methods have been proposed to overcome these issues. This work proposes a Multi-Objective Divide and Conquer (MODC) model for network traffic classification, by combining, into a hybrid model, supervised and unsupervised machine learning algorithms, based on the divide and conquer strategy. Additionally, it is a flexible model since it allows network administrators to choose between a set of parameters (pareto-optimal solutions), led by a multi-objective optimization process, by prioritizing flow or byte accuracies. Our method achieved 94.14% of average flow accuracy for the analyzed dataset, outperforming the six DPI-based tools investigated, including two commercial ones, and other machine learning-based methods.


Sign in / Sign up

Export Citation Format

Share Document