Impact of Treating Ammonia-Nitrogen Contamination from Chemical Fertilizer Plant Using Extended Aeration Activated Sludge System

Author(s):  
Mohammad Fakhuma Ubaidillah Bin Md Hafiz ◽  
Shamsul Rahman Bin Mohamed Kutty ◽  
Shekhah Norafizah Binti Shekh Imadu Hakmi
2015 ◽  
Vol 19 (2) ◽  
pp. 7
Author(s):  
Andrés Felipe Torres Franco ◽  
Nancy Vásquez Sarria ◽  
Jenny Rodriguez Victoria

A pilot-scale study was conducted to evaluate a traditional contact stabilization activated sludge system (CSASC) and a modified CSAS (CSASM) treating domestic wastewater. The CSASC system was comprised of a contact reactor (CR), a stabilization reactor (SR) and a secondary settler (SS); the CSASM included a second CR, a second SS (CR2 and SS2), and a modified SR (SRM) divided into four zones: an attached-suspended growth zone which allowed the system to reach an average sludge retention time close to 36 d and favored the occurrence of nitrification; an anoxic zone for denitrification occurrence; an aerated suspended growth zone with a high presence of organic carbon; and an additional aerated suspended growth zone with a high ammonia concentrations environment. The CSASC’s removal efficiencies of chemical oxygen demand (COD) and total ammonia nitrogen (TAN) were respectively 94±4 % and 53±12%; whereas CSASM’s efficiencies were 88±7% for COD and 92±7% for TAN. Concentrations of TAN and NO3 --N in the CSASC’s final effluent were 14.3±5.2 and 5.0±2.9 mg×L-1; and 4.8±4.4 and 9.1±5.8 mg×L-1 in the CSASM’s final effluent. Results demonstrated that the proposed configuration obtained higher nitrogen removal efficiencies than traditional CSAS.</p>


2005 ◽  
Vol 52 (10-11) ◽  
pp. 265-272 ◽  
Author(s):  
Y. Wei ◽  
J. Liu

To overcome unstable worm growth, a new worm-reactor was developed for oligochaete growth. The bench scale of this worm-reactor was used to treat the discharged excess sludge from a pilot activated sludge system, and experiments were carried out to investigate the sludge reduction induced by Oligochaeta. Due to difficult getting free-swimming worms such as Aeolosoma hemprichicii and Nais elinguis, Tubifex tubifex was thus selected and inoculated in Reactor 1 at the start-up phase except the control reactor (Reactor 2). Tubifex occurred in Reactor 1 throughout the operation period after its inoculation, and mainly attached on the carriers and aggregated on the bottom of the worm-reactor. Free-swimming worms such as Aeolosoma hemprichicii, Nais elinguis, and Aulophorus furcatus were found in both reactors since the 35th day. Microscopic investigation showed that these free-swimming worms naturally produced in the pilot activated sludge system, and entered into both reactors along the discharged sludge. Results clearly showed that the average sludge reduction in Reactor 1 was 59%, much higher than that in the control. The characteristics of sludge settling was improved by worm growth, but was not too much. High ammonia nitrogen concentration in influent sludge was toxic to worms, and then inhibited worm growth. Both the total inorganic nitrogen and phosphorus releases into effluent sludge were observed in Reactor 1, but such increases were not heavy.


2015 ◽  
Vol 1092-1093 ◽  
pp. 923-926
Author(s):  
Shan Hong Lan ◽  
Chuan Lu Wang ◽  
Hui Jie Li ◽  
Heng Zhang ◽  
Hui Xia Lan

The double membrane bio-reactor was used to treat the simulated wastewater under aerobic conditions, and the aerobic activated sludge system was set as the control. At the beginning of acclimation, COD removal efficiency in double membrane bio-reactor was higher than that of aerobic activated sludge system, but difference between two systems was little in later stage. The ammonia nitrogen removal rate in double membrane bio-reactor was significantly higher than aerobic activated sludge throughout the whole acclimation stage and nitrite concentration in the effluent from double membrane bio-reactor was lower than that of from aerobic activated sludge, while the nitrate concentration was higher. The nitrite was not accumulated in double membrane bio-reactor through the whole process of acclimation, while the accumulation of nitrate happened in aerobic activated sludge system.


2018 ◽  
Author(s):  
Gede H Cahyana

As a part of activated sludge system, oxidation ditch has a special form like a canal without end point. Rotor is used to diffuse oxygen from air to the water.


1974 ◽  
Vol 9 (1) ◽  
pp. 235-249 ◽  
Author(s):  
S.G. Nutt ◽  
K.L. Murphy

Abstract Conventional wastewater parameters are accepted as inadequate estimates of the condition of activated sludge but numerous other indices have been suggested as specific measurements of the activity and viability of the biomass. Literature in the related fields of microbiology and biochemistry were reviewed in order to select the most appropriate activity parameters for application to a heterogeneous biological material. Modified analytical methods were applied to a well-controlled biological system containing a single predominant bacterial species to evaluate the relative merit of each as an indicator of viability and activity. The potential of each parameter in a complex heterogeneous system was determined by monitoring each index in a bench activated sludge system. The predominant culture studies indicated that the ATP content of the biomass and the dehydrogenase activity were potential indicators of cell viability in a simple system. However, in the complex activated sludge system, only the ATP content showed significant correlation to the organic carbon removal rate.


1991 ◽  
Vol 24 (5) ◽  
pp. 233-240 ◽  
Author(s):  
Nik Fuaad Nik Abllah ◽  
Aik Heng Lee

A laboratory study was conducted to determine the feasibility of batch activated sludge reactor for treating pineapple wastewater and to examine the effects of bioaugmentation on treatment performance. The experimental set-up consists of eleven batch reactors. Activated sludge obtained from a wastewater treatment plant treating domestic wastewater was used as seed for the reactors. Synthetic pineapple wastewater was used as feed for the reactors. The eleven reactors were arranged to evaluate the total organic removal, nitrification, and sludge production by bioaugmentation process. Three major factors considered were influent organic loading, ammonia-nitrogen, and dosage of bacterial-culture-product addition. Removal of TOG (total organic carbon), sludge production in terms of SS(suspended solids), and ammonia-nitrogen removal variation are used as evaluation parameters. The TOC removal efficiency after the end of a 48 hour reactor run, for influent TOC of 350.14 to 363.30 mg/l, and 145.92 to 169.66 mg/l, was 94.41 to 95.89%, and 93.72 to 94.73% respectively. Higher organic removal was observed in the bioaugmented reactors with higher organic loading. The better organic removal efficiency in the bioaugmented reactors was probably due to activities of bacteria added. The test results also indicated that sludge yield was enhanced by the bacteria additive and high bacteria dosage produced less sludge. Bioaugmentation was observed to be a suitable alternative for enhancing the biological treatment of pineapple wastewater.


1994 ◽  
Vol 30 (3) ◽  
pp. 73-78 ◽  
Author(s):  
O. Tünay ◽  
S. Erden ◽  
D. Orhon ◽  
I. Kabdasli

This study evaluates the characterization and treatability of 2,4-D production wastewaters. Wastewaters contain 20000-40000 mg/l COD, 17000-30000 mg/l chloride and pH is around 1.0. Chemical oxidation with hydrogen peroxide provided almost complete COD removal. The optimum conditions are 3:1 H2O2/COD oxidant dosage, 3000 mg/l Fe3+ as catalyst and pH 3. Partial oxidation at 0.5:1 H2O2//COD ratio is also effective providing 67% COD removal. A batch activated sludge system is used for biological treatability. Dilution is needed to maintain a tolerable chloride concentration which increases through COD removal. pH also increased during COD removal. 85% COD removal is obtained for the 50% dilution at an organic loading of 0.3 day‒1 on a COD basis. Completely and partially oxidized wastewaters are also treated in the activated sludge down to 30 mg/l BOD5.


Sign in / Sign up

Export Citation Format

Share Document