On the relationship between chlorophyll fluorescence quenching and the quantum yield of electron transport in isolated thylakoids

1994 ◽  
Vol 40 (1) ◽  
pp. 93-106 ◽  
Author(s):  
Henning Hormann ◽  
Christian Neubauer ◽  
Ulrich Schreiber
1995 ◽  
Vol 22 (2) ◽  
pp. 239 ◽  
Author(s):  
N Mohanty ◽  
AM Gilmore ◽  
HY Yamamoto

The putative relationship between the light-induced absorbance increase at 530 nm (ΔA530), the so-called light-scattering change, and non-photochemical chlorophyll fluorescence quenching (NPQ) was examined by the effect of inhibitors. Antimycin at a low concentration (350 nM) completely inhibited fluorescence quenching while only partially inhibiting A530. This effect was independent of the mode of thylakoid energisation and preinduction of violaxanthin de-epoxidation. Dibucaine at 20 FM abolished NPQ but had little effect on ΔA530. Moreover, the light-induced ΔA530 signal was present even in the absence of de-epoxidised xanthophylls. The cation exchanger A23187 blocked the development of NPQ as well as relaxed fluorescence quenching at steady state without involving a major portion of ΔA530. Thus, the relationship between energy-dependent A530 changes and fluorescence quenching was non-linear under all conditions tested. The light-induced absorbance increase at 530 nm, therefore, is insufficient for NPQ. The differential effects of inhibitors are explained schematically, depicting three phases for NPQ: (a) formation of zeaxanthin and antheraxanthin by the xanthophyll cycle; (b) formation of a state reflected by A530 that is induced by the transthylakoid ApH, possibly involving aggregation of LHCII; and (c) fluorescence quenching by the combined effect of both steps and by the H+-cation exchange properties of thylakoid membranes.


1987 ◽  
Vol 42 (5) ◽  
pp. 581-584 ◽  
Author(s):  
G. Heinrich Krause ◽  
Henrik Laasch

Abstract Chlorophyll a fluorescence quenching was studied in intact, CO2 fixing chloroplasts isolated from spinach. Energy-dependent quenching (qᴇ), which is correlated with the light-induced pro­ ton gradient across the thylakoid membrane presumably reflects an increase in the rate-constant of thermal dissipation of excitation energy in the photosynthetic pigment system . The extent of qᴇ was found to be linearly related to the decrease of quantum yield of photosynthesis. We suggest that this relationship indicates a dynamic property of the membrane to adjust thermal dissipation of absorbed light energy to the energy requirement of photosynthesis.


1995 ◽  
Vol 22 (2) ◽  
pp. 209 ◽  
Author(s):  
U Schreiber ◽  
H Hormann ◽  
C Neubauer ◽  
C Klughammer

The general principles involved in chlorophyll fluorescence quenching analysis by the saturation pulse method are presented, outlining the rationale for using the empirical fluorescence parameters Fv/Fm and Fv/Fm' as indices for the photosystem II (PSII) photochemical quantum yield, ΦII, in the dark-adapted or illuminated states, respectively. The relationship between ΦII and the quantum yield of photosynthetic electron transport is linear over a wide range of quantum flux densities. However, there is a fraction of PSII contributing approximately 30% to maximal quantum yield, which is closed at rather low quantum flux densities, while at the same time there is only a small drop in ΔF/Fm'. The details of Fm and Fm' determination by application of saturating light are critically examined, with emphasis on the situation in algae where the fluorescence rise to the peak leLel is followed by a rapid decline. For this purpose, the rapid induction kinetics upon onset of strong continuous illumination are investigated. Dark-adapted samples show two distinct intermediate fluorescence levels, I1 and I2, in the polyphasic rise from the O to the P level. The I1 level separates a biphasic 'photochemical' rise, which also can be induced by a saturating single turnover flash, from several 'thermal' phases, induction of which requires multiple turnovers at PSII. Arguments are put forward favouring the I2 level for assessment of Fm or Fm', on which calculation of Fv/Fm or ΔF/Fm' is based. It is shown that although an assessment based on the I1 level, as practised by the so-called pump- and-probe method, does lead to a consistent underestimation of ΔF/Fm, in many cases similar information as with I2 determination is obtained.


Sign in / Sign up

Export Citation Format

Share Document