Evaluating resistance of barley breeding lines to scald in field plots

Euphytica ◽  
1984 ◽  
Vol 33 (3) ◽  
pp. 897-901 ◽  
Author(s):  
T. N. Khan ◽  
P. A. Portmann ◽  
Robyn McLean
1999 ◽  
Vol 26 (2) ◽  
pp. 100-106 ◽  
Author(s):  
A. K. Culbreath ◽  
J. W. Todd ◽  
D. W. Gorbet ◽  
S. L. Brown ◽  
J. A. Baldwin ◽  
...  

Abstract Epidemics of tomato spotted wilt, caused by tomato spotted wilt Tospovirus (TSWV), were monitored in field plots of runner-type peanut (Arachis hypogaea L.) cultivars Georgia Green and Georgia Runner and numerous breeding lines from four different breeding programs as part of efforts toward characterizing breeding lines with potential for release as cultivars. Breeding lines were divided into early, medium and late maturity groups. The tests were conducted near Attapulgus, GA and Marianna, FL in 1997 and in Tifton, GA and Marianna, FL in 1998. Epidemics in some early and medium maturing breeding lines, including some genotypes with high oleic acid oil chemistry, were comparable to those in Georgia Green, the cultivar most frequently used in the southeastern U.S. for suppression of spotted wilt epidemics. No early maturing breeding lines had lower spotted wilt final intensity ratings or higher yields than Georgia Green. However, spotted wilt intensity ratings in some late maturing lines and a smaller number of medium maturing lines were significantly lower than those of Georgia Green. Several of those lines also produced greater pod yields than Georgia Green. Results from these experiments indicated that there is potential for improving management of spotted wilt though development of cultivars that suppress spotted wilt epidemics more than currently available cultivars. There was no indication that differences in spotted wilt ratings corresponded to differences in numbers of thrips adults or larvae.


Crop Science ◽  
2013 ◽  
Vol 53 (4) ◽  
pp. 1447-1454 ◽  
Author(s):  
M. J. Edney ◽  
W. G. Legge ◽  
M. S. Izydorczyk ◽  
T. Demeke ◽  
B. G. Rossnagel

Author(s):  
Algė Leistrumaitė ◽  
Vanda Paplauskienė ◽  
Audronė Mašauskienė

Evaluation and Use of Genetic Resources in Spring Malting Barley Breeding in Lithuania During the period 2004-2006, grain yield stability and malt quality characteristics of 47 spring barley varieties and 55 promising breeding lines from the collection of spring barley genetic resources were investigated at the Lithuanian Institute of Agriculture (LIA). The growing conditions in 2004 were fairly normal compared with the long-term mean, and the years 2005 and 2006 were rather dry. The varieties and breeding lines tested showed from medium to high variation of grain > 2.5 mm yield (CV 11.5-34.3%) and medium variation of grain yield (CV 4.39-13.33%). However, high temperatures and drought in June of 2006 caused a low grain > 2.5 mm yield (by on average 55.0-67.8%). Promising breeding lines were characterised as having higher grain yield and extract output per ha compared with barley varieties. However, the data showed that grain grading 2.5 mm should be improved for the breeding lines. Using the software STABLE we estimated the stability of malting barley quality traits in relation to weather conditions during the crop year, genotype properties for varieties and breeding lines, as well as the interactions of variety and weather conditions. The selection of lines promising in terms of grain yield, > 2.5 mm grain yield and extract yield, was based on their ability to realise the genetic potential in various growing conditions. The highest score in integral assessment of grain yield, grain > 2.5 mm yield and extract yield was identified for the varieties Tocada', Sebastian', Scarlett' and breeding lines: 7939-1, 7661-1, and 8080-4. The varieties and breeding lines that exhibited high grain stability, high grain quality and other agronomic traits were utilised in further breeding programmes.


2015 ◽  
Vol 95 (5) ◽  
pp. 923-929 ◽  
Author(s):  
Xinyao He ◽  
Mohamed Osman ◽  
James Helm ◽  
Flavio Capettini ◽  
Pawan K. Singh

He, X., Osman, M., Helm, J., Capettini, F. and Singh, P. K. 2015. Evaluation of Canadian barley breeding lines for Fusarium head blight resistance. Can. J. Plant Sci. 95: 923–929. Fusarium head blight (FHB) is a major challenge to the successful production of barley in Canada, as well as for end-users such as the malting and brewing industries. Due to the quantitative inheritance of FHB resistance, continuous effort is required to identify breeding lines with improved FHB resistance and incorporate them into crossing schemes to enhance FHB resistance. In the present study, 402 advanced breeding lines from Alberta, Canada, were evaluated in the FHB screening nursery at CIMMYT, Mexico. In 2011 and 2012, FHB incidence was measured on a scale of 1 to 4 to eliminate the most susceptible lines. In 2013 and 2014, 181 lines with the lowest disease scores in the previous 2 yr were tested in replicated experiments for field FHB index, Fusarium-damaged kernels, and deoxynivalenol content. Agronomic and morphological traits, specifically days to heading, plant height, and row and hull types were also evaluated in relations to FHB parameters. Correlation coefficients among the three FHB parameters in both 2013 and 2014 were all significant at P<0.0001, ranging from 0.36 to 0.63. Additional correlation analysis showed that late-maturing, tall, and two-row lines tended to have lower disease, whereas hull type did not show a significant correlation with FHB. Several lines with high and stable FHB resistance similar to that of the resistant checks were identified. These could be used in breeding programs as resistance sources or be registered as new cultivars if their overall attributes meet commercial standards.


2017 ◽  
Vol 54 (1) ◽  
pp. 77-90
Author(s):  
Bogna Zawieja ◽  
Ewa Bakinowska ◽  
Andrzej Bichoński ◽  
Wiesław Pilarczyk

Summary The differences between individual breeding lines of spring barley and a control variety were tested in terms of several measured (continuous) and qualitative traits. The impact of the qualitative traits (diseases) on the quantitative traits, especially yield, was assessed on the basis of the significance of differences for both qualitative traits and yield. Depending on the type of trait, either a logistic model or analysis of variance was used as a statistical tool. The statistically significant differences between some breeding lines and the control variety were shown. It was observed that in fodder barley both infection by mildew and lodging influenced yield. The results of analyses obtained in the so-called pre-preliminary trials and preliminary trials were different. This fact confirmed the necessity of repeating trials over several years.


Author(s):  
Volodymyr Hudzenko ◽  
Tetiana Polishchuk ◽  
Oleksandr Demydov ◽  
Mykola Sardak ◽  
Nataliia Buniak ◽  
...  

The aim of the present study was to substantiate theoretically and to test in practice scheme of multi-environment trials at the final stage of spring barley breeding process and to distinguish the genotypes which combine superior yield performance and stability. In the first year of competitive testing (2015) nine promising spring barley breeding lines have been selected under condition of the Central part of Forest-Steppe of Ukraine (latitude 49°64′, longitude 31°08′, altitude 153 m). In 2016 and 2017, the genotypes were additionally tested in two other different agro-climatic zones of Ukraine: Polissia (latitude 50°93′, longitude 31°69′, altitude 126 m) and Northern Steppe (latitude 48°56′, longitude 32°32′, altitude 171 m). In addition to the standard variety Vzirets, the breeding lines were compared with ten widespread spring barley varieties in agricultural production. Significant total yield variability of the genotypes and cross-over genotype by environment interaction has been revealed. It confirmed the validity of proposed combination of spatial (zones) and temporal (years) gradients for more efficient evaluation of the genotype by environment interaction and differentiation of genotypes in terms of yield performance and stability. As a practical result, using additive main effects and multiplicative interaction (AMMI) and genotype main effects plus genotype by environment interaction (GGE) models, four spring barley breeding lines with combination of superior yield performance and high stability have been identified.


2017 ◽  
Vol 107 (1) ◽  
pp. 100-108 ◽  
Author(s):  
R. R. Burlakoti ◽  
S. Gyawali ◽  
S. Chao ◽  
K. P. Smith ◽  
R. D. Horsley ◽  
...  

Pyrenophora teres f. maculata, the causal agent of spot form of net blotch (SFNB), is an emerging pathogen of barley in the United States and Australia. Compared with net form of net blotch (NFNB), less is known in the U.S. Upper Midwest barley breeding programs about host resistance and quantitative trait loci (QTL) associated with SFNB in breeding lines. The main objective of this study was to identify QTL associated with SFNB resistance in the Upper Midwest two-rowed and six-rowed barley breeding programs using a genome-wide association study approach. A total of 376 breeding lines of barley were evaluated for SFNB resistance at the seedling stage in the greenhouse in Fargo in 2009. The lines were genotyped with 3,072 single nucleotide polymorphism (SNP) markers. Phenotypic evaluation showed a wide range of variability among populations from the four breeding programs and the two barley-row types. The two-rowed barley lines were more susceptible to SFNB than the six-rowed lines. Continuous distributions of SFNB severity indicate the quantitative nature of SFNB resistance. The mixed linear model (MLM) analysis, which included both population structure and kinship matrices, was used to identify significant SNP-SFNB associations. Principal component analysis was used to control false marker-trait association. The linkage disequilibrium (LD) estimates varied among chromosomes (10 to 20 cM). The MLM analysis identified 10 potential QTL in barley: SFNB-2H-8-10, SFNB-2H-38.03, SFNB-3H-58.64, SFNB-3H-78.53, SFNB-3H-91.88, SFNB-3H-117.1, SFNB-5H-155.3, SFNB-6H-5.4, SFNB-6H-33.74, and SFNB-7H-34.82. Among them, four QTL (SFNB-2H-8-10, SFNB-2H-38.03 SFNB-3H-78.53, and SFNB-3H-117.1) have not previously been published. Identification of SFNB resistant lines and QTL associated with SFNB resistance in this study will be useful in the development of barley genotypes with better SFNB resistance.


2020 ◽  
Vol 11 (3) ◽  
pp. 425-430
Author(s):  
V. M. Hudzenko ◽  
O. A. Demydov ◽  
V. P. Kavunets ◽  
L. M. Kachan ◽  
V. A. Ishchenko ◽  
...  

Increasing crop adaptability in terms of ensuring a stable level of productivity in the genotype – environment interaction is still the central problem of plant breeding theory and practice. The aim of the present study is to theoretically substantiate and practically test a scheme of multi-environment trials, as well as interpret experimental data using modern statistical tools for evaluation of the genotype by environment interaction, and highlight the best genotypes with combining yield performance and ecological stability at the final stage of the spring barley breeding process. For this purpose in the first year of competitive testing (2016) at the V. M. Remeslo Myronivka Institute of Wheat of the National Academy of Agrarian Sciences of Ukraine we selected nine promising spring barley breeding lines. In 2017 and 2018 these breeding lines were additionally tested in two other scientific institutions located in different agroclimatic zones of Ukraine. For a more reliable assessment, the breeding lines were compared not only with standard cultivar, but also with ten spring barley cultivars widespread in agricultural production of Ukraine. Thus, for three years of competitive testing, we received experimental genotype-environmental data from seven environments, which represent a combination of contrasting agroclimatic zones (Central part of the Forest-Steppe, Polissia and Northern Steppe of Ukraine) and different years (2016–2018). Our results revealed significant variability of mean yield of genotypes, as well as cross-over genotype by environment interaction. The first two principal components of both AMMI and GGE biplot explained more than 80% of the genotype by environment interaction. In general, the peculiarities we revealed indicate the effectiveness of the proposed combination of spatial (agroclimatic zones) and temporal (years) gradients to identify the best spring barley genotypes with the optimal combination of yield performance and ecological stability. Using AMMI and GGE biplot models was effective for the comprehensive differentiation of genotypes in terms of wide and specific adaptability, as well as for qualitative characterization of test environments and providing mega-environment analysis. As a practical result of the multi-environment trial, four spring barley breeding lines have been submitted to the State Variety Testing of Ukraine as new cultivars MIP Sharm, MIP Tytul, MIP Deviz and MIP Zakhysnyk, respectively.


Sign in / Sign up

Export Citation Format

Share Document