Relation of slope winds to the ambient flow over gentle terrain

1990 ◽  
Vol 53 (1-2) ◽  
pp. 93-102 ◽  
Author(s):  
L. Mahrt ◽  
S�ren Larsen
Keyword(s):  
2007 ◽  
Vol 64 (10) ◽  
pp. 3406-3423 ◽  
Author(s):  
Gui-Ying Yang ◽  
Brian Hoskins ◽  
Julia Slingo

Abstract Multilevel 15-yr ECMWF Re-Analysis (ERA-15) and satellite-observed brightness temperature (Tb) data for the period May–October 1992 are used to examine the horizontal and vertical structures of convectively coupled equatorial waves. Dynamical waves are isolated using a methodology developed previously. Composite structures of convectively coupled equatorial waves are obtained using linear regression/correlation between convection (Tb) and dynamical structures. It is found that the relationship depends on the ambient flow and the nature of the convective coupling, and varies between off-equatorial- and equatorial-centered convection, different hemispheres, and seasons. The Kelvin wave structure in the Western Hemisphere is generally consistent with classic equatorial wave theory and has its convection located in the region of low-level convergence. In the Eastern Hemisphere the Kelvin wave tends to have convection in the region of enhanced lower-tropospheric westerlies and a tilted vertical structure. The Kelvin wave also tends to have a third peak in zonal wind amplitude at 500 hPa and exhibits upward propagation into the lower stratosphere. Lower-tropospheric westward-moving mixed Rossby–gravity (WMRG) and n = 1 Rossby (R1) wave structures and their relationship with convection are consistent with classic equatorial wave theory and the implied lower-tropospheric convergences. In the Eastern Hemisphere the WMRG and R1 waves have first baroclinic mode structures in the vertical. However, in the Western Hemisphere, the R1 wave has a barotropic structure. In the Eastern Hemisphere the R1 wave, like the Kelvin wave, tends to have equatorial convection in the region of enhanced lower-level westerlies, suggesting that enhanced surface energy fluxes associated with these waves may play an important organizing role for equatorial convection in this warm-water hemisphere. In the upper troposphere, eastward-moving Rossby–gravity (EMRG) and n = 1 gravity waves are found in the Eastern Hemisphere, and eastward-moving WMRG and R1 waves are found in the Western Hemisphere, suggestive of Doppler shifting of waves by the ambient flow.


2021 ◽  
Author(s):  
Eugueni Matveev ◽  
Amanda S. Kahn ◽  
Dafne Eerkes-Medrano ◽  
Danielle A. Ludeman ◽  
Pablo Aragonés Suárez ◽  
...  
Keyword(s):  
Deep Sea ◽  

1987 ◽  
Vol 109 (4) ◽  
pp. 295-306 ◽  
Author(s):  
J. H. Nath

Wave force coefficient variability for cylinders, from wave to wave in a train of periodic waves, has been shown to be dependent on the phase of the force record relative to the ambient flow. The phase varies due to vortex shedding, but the maximum force is approximately constant as seen from this work and the work of other investigators. Thus, the maximum force coefficient is tightly organized according to the Keulegan-Carpenter number and scatter is seen in the phase angle versus Keulegan-Carpenter number. On the other hand, both Cd and Cm have scatter due to these phase differences from wave to wave. For unknown reasons, even when averaged over several wave cycles there is scatter in the results for Cd and Cm. This investigation shows that the maximum force coefficients for a heavily roughened vertical cylinder are tightly arranged according to the Keulegan-Carpenter number and the period parameter. Furthermore, the phase angle is similarly much more organized than for the smooth cylinder.


Author(s):  
Kjetil B. Skaugset ◽  
Carl M. Larsen

Deep-water oilfield developments demand accurate predictions of vortex induced vibrations (VIV) of risers and free span pipelines subjected to ocean current. In order to prolong operational life of such structures, VIV suppression devices such as helical strakes or shrouds are often employed. Such devices will, however, imply certain disadvantages such as drag amplification and increased operational costs. Therefore the quest for effective suppression devices with a minimum of such drawbacks is still ongoing. The present paper presents a novel approach for VIV suppression based on radial water jets from prescribed patterns of circular openings in the cylinder wall. Jet flow will introduce a disturbance that will change VIV amplitudes. The alternation of the flow pattern must be understood to have both 2-dimensional (2-D) and 3-D effects. 2-D effects will influence the local pressure on the cylinder surface by altering the separation point as well as creating a general disturbance to the flow, while the 3-D effects involve changes in correlation of the vortex shedding process along the span of the cylinder. Results will be presented from experiments in a towing tank testing four 2m long spring supported cylinders with diameter 0.1m and three different patterns of radial water jets. One cylinder has three straight rows of holes at angular positions 0° and ±120° with respect to the ambient flow. The second has two straight rows of holes at positions ±120° with respect to the ambient flow, while the last has one straight line of holes blowing directly upstream. Since the first can be said to consist of the two latter, comparing them to each other gives valuable information in order to understand the physics of the first. The volume flow rate and reduced velocity have been varied in the tests. Oscillation amplitudes, frequencies, added mass and drag force coefficients are presented and compared to a smooth cylinder.


2005 ◽  
Vol 133 (9) ◽  
pp. 2721-2740 ◽  
Author(s):  
Günther Zängl

Abstract This study presents high-resolution numerical simulations in order to examine the dynamical mechanisms controlling the persistence of wintertime cold-air pools in an Alpine valley system. First, a case study of a cold-pool episode is conducted, the formation of which was related to the passage of a warm front north of the Alps. While the preexisting cold air was rapidly advected away in the Alpine foreland, a persistent cold pool was maintained in the inner-Alpine part of the valley system, associated with sustained horizontal temperature differences of up to 10 K over a distance of 30 km. The case study is complemented by a series of semi-idealized simulations, combining realistic topography with idealized large-scale flow conditions. These simulations consider a range of different ambient wind directions in order to investigate their impact on the cold-pool persistence. The results indicate that the most important dynamical mechanism controlling the persistence of cold-air pools in deep Alpine valleys is cold-air drainage toward the Alpine foreland. The preferred direction for such a drainage flow is down the pressure gradient imposed by the (geostrophically balanced) ambient flow. Thus, for a given valley geometry and a given strength of the ambient flow, the probability for persistent cold-air pools mainly depends on the ambient wind direction. If the direction of the imposed pressure gradient matches a sufficiently wide connection to the foreland (a valley or a low pass), then a drainage flow will lead to a rapid removal of the cold air. However, the presence of pronounced lateral constrictions in the connecting valley may strongly reduce the drainage efficiency. Cold-pool erosion by turbulent vertical mixing seems to play a comparatively minor role in deep valley systems as considered in this study.


2021 ◽  
Author(s):  
Christos Papoutsellis ◽  
Matthieu Mercier ◽  
Nicolas Grisouard

<p>We model internal tides generated by the interaction of a barotropic tide with variable topography. For the barotropic part, an asymptotic solution valid over the variable topography is considered. The resulting non-uniform ambient flow is used as a prescribed barotropic forcing for the baroclinic equations (linearized, non-hydrostatic, Euler equations within the Boussinesq approximation).</p><p>The internal-tide generation problem is reformulated by means of a Coupled-Mode System (CMS) based on the decomposition of the baroclinic stream function in terms of vertical basis functions that consistently satisfy the bottom boundary condition. The proposed CMS is solved numerically with a finite difference scheme and shows good convergence properties, providing efficient calculations of internal tides due to 2D topographies of arbitrary height and slope. We consider several seamounts and shelf profiles and perform calculations for a wide range of heights and slopes. Our results are compared against existing analytical estimates on the far-field energy flux in order to examine the limit of validity of common simplifications (Weak Topography Approximation, Knife edge). For subcritical cases, local extrema of the energy flux exist for different heights. Non-radiating topographies are also identified for some profiles of large enough heights. For supercritical cases, the energy flux is in general an increasing function with increasing height and criticality, and does not compare well against analytical results for very steep idealized topographies. The effect of the adjusted barotropic tide in the energy flux and the local properties of the baroclinic field is investigated through comparisons with other semi-analytical methods based on a uniform barotropic tide (Green’s function approach).  A method for estimating the sea-surface signature of internal tides is also provided.</p>


Author(s):  
Benjamin J. Hatchett ◽  
Michael L. Kaplan ◽  
Nicholas J. Nauslar ◽  
Craig M. Smith ◽  
Kellen Nelson
Keyword(s):  

2016 ◽  
Vol 21 (1) ◽  
pp. 35-47
Author(s):  
Ram P. Regmi ◽  
Sangeeta Maharjan

Atmospheric processes over the Himalayan complex terrain are yet to be studied extensively. Only a few significant researches are reported from this region and the Far-Western Region (FWR) of Nepal still remains untouched. Thus, the present study was conceived to understand the meteorological flow characteristics and thermal environment over the region and associated areas during the late wintertime with the application of the state-of-the-art-of Weather Research and Forecasting (WRF) Modeling System. The study revealed that the northern mountainous region developed strong down slope wind during the night and morning times, which sweeps out the southern plain area of Nepal and may reach just beyond the border. The wind over the plain was very shallow whose depth was just about 100 m. The down slope winds over the southern slope of the Daijee and Nandhaur mountain ranges were significantly enhanced by the subsidence of the southerly wind that prevails above 1 km height above the mean sea level. Close to the noon time a very gentle southerly valley wind from the southern plain replaced the nighttime down slope. Very shallow but strong surface inversion builds up over the plain that breaks up in the late morning. The depth of the mixed layer and the valley wind may reach up to 1km in the afternoon. The thermal environment over the FWR of Nepal was fairly hot that may remain around 35°C in the afternoon around the Mahendranagar area whereas the temperature during the nighttime may go as low as 23°C. The study revealed that, contrary to the general perception, temperature over plain areas of Nepal was significantly higher than further southern areas belonging to India. The meteorological flow fields over the FWR of Nepal executed diurnal periodicity with little day-to-day variation during the late wintertime.Journal of Institute of Science and TechnologyVolume 21, Issue 1, August 2016, page: 35-47


Sign in / Sign up

Export Citation Format

Share Document