scholarly journals Evolution of Late Wintertime Thermally Driven Local Flows and Temperature Fields over Far-Western Nepal

2016 ◽  
Vol 21 (1) ◽  
pp. 35-47
Author(s):  
Ram P. Regmi ◽  
Sangeeta Maharjan

Atmospheric processes over the Himalayan complex terrain are yet to be studied extensively. Only a few significant researches are reported from this region and the Far-Western Region (FWR) of Nepal still remains untouched. Thus, the present study was conceived to understand the meteorological flow characteristics and thermal environment over the region and associated areas during the late wintertime with the application of the state-of-the-art-of Weather Research and Forecasting (WRF) Modeling System. The study revealed that the northern mountainous region developed strong down slope wind during the night and morning times, which sweeps out the southern plain area of Nepal and may reach just beyond the border. The wind over the plain was very shallow whose depth was just about 100 m. The down slope winds over the southern slope of the Daijee and Nandhaur mountain ranges were significantly enhanced by the subsidence of the southerly wind that prevails above 1 km height above the mean sea level. Close to the noon time a very gentle southerly valley wind from the southern plain replaced the nighttime down slope. Very shallow but strong surface inversion builds up over the plain that breaks up in the late morning. The depth of the mixed layer and the valley wind may reach up to 1km in the afternoon. The thermal environment over the FWR of Nepal was fairly hot that may remain around 35°C in the afternoon around the Mahendranagar area whereas the temperature during the nighttime may go as low as 23°C. The study revealed that, contrary to the general perception, temperature over plain areas of Nepal was significantly higher than further southern areas belonging to India. The meteorological flow fields over the FWR of Nepal executed diurnal periodicity with little day-to-day variation during the late wintertime.Journal of Institute of Science and TechnologyVolume 21, Issue 1, August 2016, page: 35-47

2010 ◽  
Vol 67 (11) ◽  
pp. 3739-3756 ◽  
Author(s):  
Stefano Serafin ◽  
Dino Zardi

Abstract The mechanisms governing the daytime development of thermally driven circulations along the transverse axis of idealized two-dimensional valleys are investigated by means of large-eddy simulations. In particular, the impact of slope winds and turbulent convection on the heat transfer from the vicinity of the ground surface to the core of the valley atmosphere is examined. The interaction between top-down heating produced by compensating subsidence in the valley core and bottom-up heating due to turbulent convection is described. Finally, an evaluation of the depth of the atmospheric layer affected by the slope wind system is provided.


2021 ◽  
Author(s):  
Mattia Marchio ◽  
Sofia Farina ◽  
Dino Zardi

<p><span>Diurnal wind systems typically develop in mountainous areas following the daytime heating and nighttime cooling of sloping surfaces. While down-slope winds have been extensively treated in the literature, up-slope winds have received much less attention. In particular, the physical mechanisms associated with the development of these winds, as well as the search for appropriate parameterization of turbulent fluxes of mass, momentum, and heat over slopes in numerical weather prediction models are still open research topics.</span></p><p><span>Here we present some preliminary results from the analysis of turbulence data (sonic wind speed, temperature, humidity, and turbulent fluxes) collected at two slope stations which are part of the i-Box initiative. The i-Box project (Rotach et al. 2017) aims at studying turbulent exchange processes in complex terrain areas. The experimental setup is composed of six stations disseminated in the surroundings of the alpine city of Innsbruck, in the Inn Valley. The two stations adopted for the present study are located at different points on the valley sidewalls, one with a slope angle of 27° (labelled NF27) and one with a slope angle of 10° (NF10). Both stations are located over slopes covered by alpine meadow and at an altitude of about 1000 m MSL (400 m above the valley floor). The station NF27 has two measurement points, 1.5 and 6.8 m AGL, while the station NF10 has one measurement point, at 6.2 m AGL.</span></p><p><span>The analysis shows that criteria proposed in the literature for the selection of valley-wind days may not apply for the identification of slope-wind days. Furthermore, from the analysis of second order moments, scaling relationships are derived for up-slope flow conditions. In addition, measurements representing the evolution of the up-slope flow structure from the early morning to the mid-afternoon are compared with an existing, simplified, analytical model, which provides the evolution of the vertical profiles of temperature and along-slope wind velocity as generated by a sinusoidal forcing representing the daily cycle of surface temperature. An improvement of the existing model, where the surface energy budget is considered as the boundary condition for the surface temperature, is also tested.</span></p>


2015 ◽  
Vol 20 (2) ◽  
pp. 1-5
Author(s):  
Sangeeta Maharjan ◽  
Ram P. Regmi

The mountain gap flow characteristics in and around the Chisapani mountain gap of Karnali River basin has been numerically simulated using the Weather Research and Forecasting (WRF) model to understand its spatial and temporal characteristics and its implications. The model was initialized with NCEP initial and boundary conditions to carry continuous integrations 168 long hours to identify the general flow field during early springtime. The river valley accumulates channels and flushes a narrow jet stream of about 10 ms-1 in speed and 500 m in its depth into the vast southern plain via Chisapani mountain gap during night and morning time whereas in the afternoon, the mountain feeds up-valley wind of about 4 ms-1 from the southern plain up into the Karnali River basin.Journal of Institute of Science and Technology, 2015, 20(2): 1-5


2017 ◽  
Vol 4 (1) ◽  
pp. 54
Author(s):  
Ram P. Regmi ◽  
Sangeeta Maharjan

<p class="Default">Wind power potential prevailing over the world’s deepest river gorge, the Kali Gandaki River Valley, located in the western trans-Himalaya region of Nepal, has been assessed and mapped at 1 km × 1 km horizontal grid resolution with the application of Weather Research and Forecasting (WRF) modeling system. The wind power potential maps cover 70 km × 70 km area, which encloses the very first and failed wind power project in the country and the Jomsom Airport at the center. The simulated wind characteristics compare well with the available observed wind characteristic. The wind power potential appears to vary from good to outstanding over 200 km<sup>2</sup> area along the axis of Kali Gandaki River Valley. However, a detail long-term observation, numerical simulation as well as engineering examinations are desired to address abnormal valley wind characteristics for sustainable power production over the area.</p><p class="Default"><strong>Journal of Nepal Physical Society </strong></p><p><em>Volume 4, Issue 1, February 2017, Page : 54-59</em></p>


2021 ◽  
Author(s):  
Sofia Farina ◽  
Dino Zardi ◽  
Silvana Di Sabatino ◽  
Mattia Marchio ◽  
Francesco Barbano

&lt;p&gt;Thermally driven winds observed in complex terrain are characterized by a daily cycle dominated by two main phases: a diurnal phase in which winds blow upslope (anabatic), and a nocturnal one in which they revert their direction and blow down slope (katabatic). This alternating pattern also implies two transition phases, following sunrise and sunset respectively.&amp;#160;&lt;/p&gt;&lt;p&gt;Here we study the up-slope component of the slope wind with a focus on the morning transition based on from the MATERHORN experiment, performed in Salt Lake Desert (Utah) between Fall 2012 and Spring 2013.&amp;#160;&lt;/p&gt;&lt;p&gt;The analysis develops along three main paths of investigation. The first one is the selection of the suitable conditions for the study of the diurnal component and the characterization of the morning transition. The second one focuses on the deep analysis of the erosion of the nocturnal inversion at the foot of the slope in order to investigate the physical mechanisms driving it. And the third one consists in the comparison between the experimental data and the results of an analytical model (Zardi and Serafin, 2015). The study of the morning transition in the selected case studies allowed its characterization in terms of the relation with the solar radiation cycle, in terms of its seasonality and in terms of its propagation along the slope and along the vertical direction. Most of the results of this investigation are related to the identification of the main mechanisms of erosion of the nocturnal inversion at the foot of the slope and to its role to the beginning of the transition itself. Finally, it is shown how the above model can fairly reproduce the cycle between anabatic and katabatic flow and their intensity.&lt;/p&gt;&lt;p&gt;Zardi, D. and S. Serafin, 2015: An analytic solution for daily-periodic thermally-driven slope flow. Quart. J. Roy. Meteor. Soc., 141, 1968&amp;#8211;1974.&lt;/p&gt;


Author(s):  
Fu-qiang Chen ◽  
Zhi-xin Gao ◽  
Jin-yuan Qian ◽  
Zhi-jiang Jin

In this paper, a new high multi-stage pressure reducing valve (HMSPRV) is proposed. The main advantages include reducing noise and vibration, reducing energy consumption and dealing with complex conditions. As a new high pressure reducing valve, its flow characteristics need to be investigated. For that the valve opening has a great effect on steam flow, pressure reduction and energy consumption, thus different valve openings are taken as the research points to investigate the flow characteristics. The analysis is conducted from four aspects: pressure, velocity, temperature fields and energy consumption. The results show that valve opening has a great effect on flow characteristics. No matter for pressure, velocity or temperature field, the changing gradient mainly reflects at those throttling components for all valve openings. For energy consumption, in the study of turbulent dissipation rate, it can be found that the larger of valve opening, the larger of energy consumption. It can be concluded that the new high multi-stage pressure reducing valve works well under complex conditions. This study can provide technological support for achieving pressure regulation, and benefit the further research work on energy saving and multi-stage design of pressure reducing devices.


2019 ◽  
Vol 85 ◽  
pp. 02002
Author(s):  
Martin Ivanov ◽  
Sergey Mijorski

The presented paper focuses on a CFD based analyses of the complexity in the geometrical shape of the breathing thermal manikins, associated with their main functionalities. Both impacts of the external manikin’s form were studied – over the velocity and over the temperature fields in the thermal plume zone above the head. Three different geometrical shapes are analysed – a physiologically identified (called Humanoid Manikin) and two other shapes, designed to match the overall 95th percentile of the anthropometric size of the standard person (called Polygonal Manikins). The first model represents a comprehensive multifaceted figure of a manikin with high degree of physiological identity with a female human being. The second and third one, are simplified, but still with anatomically realistic component forms, accurately representing the anthropometric size of a standard person. The difference between them is in the presence of additional flow optimization collars in the third model. The numerical results demonstrate the clear impact of the manikins’ geometrical characteristics over the simulated breathing and convective flows. The optimization with the proposed collars had a positive effect over the resulted flow acceleration at top head and chest zones. However, the improvement of the flow characteristics was observed for two of the simulated three breathing phases and further shape optimization is required.


Author(s):  
Luiz Tobaldini Neto ◽  
Ramon Papa ◽  
Luis C. de Castro Santos

Aircraft braking pads are subject to an extremely severe thermal environment. During a typical landing the carbon brake pads can reach temperatures up to 700–800 K or even more. Between landings during the taxi and parking phase the brakes have to cool off back to their operational limits in a time interval consistent with the average operational time. In order to evaluate the impact of design modifications on the wheel mounting and fairings, without the need of extensive laboratory and flight campaigns, a CFD (Computational Fluid Dynamics) based methodology was developed. Due to the geometry complexity the need of a geometrically representative, but simplified model comes up, in order to capture the major features of the natural convection flow and temperature fields and can be used to evaluate the influence of design changes on the braking system cooling times. A calibration procedure is carried out, aiming a better representation of the transient phenomenon, using a thermal resistances setting up feature from the solver used. An example of the application of this methodology is presented. A computational grid of over 700,000 tetrahedral elements was constructed and the Navier-Stokes equations are solved using a commercial package (FLUENT). The computational cost for a time accurate solution demands the use of parallel processing in order to complete the analysis in a typical industrial environment timeframe. Comparison with both laboratory and flight data calibrate and validate the results of the computational model. This paper describes the details of the construction of the CFD model, the setting of the initial and boundary conditions and the comparison between measured and simulated parameters.


Author(s):  
Zhiqiang Li ◽  
Xiaowei Fan ◽  
Fang Wang ◽  
Dasi He ◽  
Shifei Wei

This paper focuses on the cooling solution to a high energy density and large capacity Li-ion battery system which consist of four packs of 26650 cells. The cooling measure is a critical technology for many Li-ion battery systems especially that designed for hybrid electric vehicles, in which, high energy density within a limited space is very common in these systems. Both the safety and efficiency of Li-ion battery cells rely on the temperature which is under control of the battery thermal management system. In this study, temperature fields within battery boxes are simulated with the computational fluid dynamic (CFD) method. With the help of an airconditioner, a cooling solution is proposed for a relatively large dimensional, high energy density Li-ion battery cells array using by vehicles. Through the proposed solution, the maximum single-cell temperature is restricted to a reasonable level, and the maximum temperature difference throughout the battery system is also improved.


2004 ◽  
Vol 61 (24) ◽  
pp. 3097-3111 ◽  
Author(s):  
Gabriele Rampanelli ◽  
Dino Zardi ◽  
Richard Rotunno

Abstract The basic physical mechanisms governing the daytime evolution of up-valley winds in mountain valleys are investigated using a series of numerical simulations of thermally driven flow over idealized three-dimensional topography. The three-dimensional topography used in this study is composed of two, two-dimensional topographies: one a slope connecting a plain with a plateau and the other a valley with a horizontal floor. The present two-dimensional simulations of the valley flow agree with results of previous investigations in that the heated sidewalls produce upslope flows that require a compensating subsidence in the valley core bringing down potentially warmer air from the stable free atmosphere. In the context of the three-dimensional valley–plain simulations, the authors find that this subsidence heating in the valley core is the main contributor to the valley– plain temperature contrast, which, under the hydrostatic approximation, is the main contributor to the valley– plain pressure difference that drives the up-valley wind.


Sign in / Sign up

Export Citation Format

Share Document