The geometrical height-scale and the pressure equilibrium in the sunspot umbra

Solar Physics ◽  
1969 ◽  
Vol 8 (2) ◽  
pp. 291-309 ◽  
Author(s):  
W. Mattig
Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2309
Author(s):  
Benedikt Roth ◽  
Dietmar Drummer

Integrative simulation techniques for predicting component properties, based on the conditions during processing, are becoming increasingly important. The calculation of orientations in injection molding, which, in addition to mechanical and optical properties, also affect the thermal shrinkage behavior, are modeled on the basis of measurements that cannot take into account the pressure driven flow processes, which cause the orientations during the holding pressure phase. Previous investigations with a high-pressure capillary rheometer (HPC) and closed counter pressure chamber (CPC) showed the significant effect of a dynamically applied pressure on the flow behavior, depending on the temperature and the underlying compression rate. At a constant compression rate, an effective pressure difference between the measuring chamber and the CPC was observed, which resulted in a stop of flow through the capillary referred to as dynamic compression induced solidification. In order to extend the material understanding to the moment after dynamic solidification, an equilibrium time, which is needed until the pressure signals equalize, was evaluated and investigated in terms of a pressure, temperature and a possible compression rate dependency in this study. The findings show an exponential increase of the determined equilibrium time as a function of the holding pressure level and a decrease of the equilibrium time with increasing temperature. In case of supercritical compression in the area of a dynamic solidification, a compression rate dependency of the determined equilibrium times is also found. The measurement results show a temperature-invariant behavior, which allows the derivation of a master curve, according to the superposition principle, to calculate the pressure equilibrium time as a function of the holding pressure and the temperature.


2014 ◽  
Vol 78 (1) ◽  
pp. 171-202 ◽  
Author(s):  
C. M. B. Henderson ◽  
D. L. Hamilton ◽  
J. P. Waters

AbstractExperiments in the system NaAlSiO4(Ne)−KAlSiO4(Ks)−SiO2(Qz)−H2O at 100 MPa show that the maximum content of NaAlSi2O6 in leucite is ∼4 wt.% and that analcime is close to the stoichiometric composition (NaAlSi2O6.H2O). Analcime forms metastably on quenching the higher-temperature experiments; it is secondary after leucite in experiments quenched from 780°C, while from 850°C it forms by alteration of leucite, and by devitrification of water-saturated glass. Both processes involve reaction with Na-rich aqueous fluids. Stable analcime forms at 500°C, well below the solidus, and cannot form as phenocrysts in shallow volcanic systems. New data for natural analcime macrocrysts in blairmorites are presented for the Crowsnest volcanics, Alberta, Canada. Other researchers have suggested that primary analcime occurs as yellow-brown, glassy, analcime phenocrysts. Our microprobe analyses show that such primary analcime is close to stoichiometric, with very low K2O (<0.1 wt.%), minor Fe2O3 (0.5−0.8 wt.%) and CaO (∼0.5 wt.%). An extrapolation of published experimental data for Ne−Ks−Qz at >500 MPa PH2O, where Anl + melt coexist, suggests that at >800 MPa two invariant points are present: (1) a reaction point involving Kf + Ab + Anl + melt + vapour; and (2) a eutectic with Kf + Anl + Ne + melt + vapour. We suggest that the nepheline-free equilibrium mineral assemblage for Crowsnest samples is controlled by reaction point (1). In contrast, blairmorites from Lupata Gorge, Mozambique, form at eutectic (2), consistent with the presence of nepheline phenocrysts. Our conclusions, based on high- vs. low-pressure experiments, confirm the suggestion made by other authors, that Crowsnest volcanic rocks must have been erupted explosively to preserve glassy analcime phenocrysts during very rapid, upward transport from deep in the crust (H2O pressures ≫500 MPa). Only rare examples survived the deuteric and hydrothermal alteration that occurred during and after eruption.


1997 ◽  
Vol 318 (2) ◽  
pp. 129-133 ◽  
Author(s):  
V. Landgraf
Keyword(s):  

2020 ◽  
Vol 642 ◽  
pp. A231
Author(s):  
D. Li ◽  
X. Yang ◽  
X. Y. Bai ◽  
J. T. Su ◽  
Z. J. Ning ◽  
...  

Context. The carbon monoxide (CO) molecular line at around 46655 Å in solar infrared spectra is often used to investigate the dynamic behavior of the cold heart of the solar atmosphere, i.e., sunspot oscillation, especially at the sunspot umbra. Aims. We investigated sunspot oscillation at Doppler velocities of the CO 7-6 R67 and 3-2 R14 lines that were measured by the Cryogenic Infrared Spectrograph (CYRA), as well as the line profile of Mg II k line that was detected by the Interface Region Imaging Spectrograph (IRIS). Methods. A single Gaussian function is applied to each CO line profile to extract the line shift, while the moment analysis method is used for the Mg II k line. Then the sunspot oscillation can be found in the time–distance image of Doppler velocities, and the quasi-periodicity at the sunspot umbra are determined from the wavelet power spectrum. Finally, the cross-correlation method is used to analyze the phase relation between different atmospheric levels. Results. At the sunspot umbra, a periodicity of roughly 5 min is detected at the Doppler velocity range of the CO 7-6 R67 line that formed in the photosphere, while a periodicity of around 3 min is discovered at the Doppler velocities of CO 3-2 R14 and Mg II k lines that formed in the upper photosphere or the temperature minimum region and the chromosphere. A time delay of about 2 min is measured between the strong CO 3-2 R14 line and the Mg II k line. Conclusions. Based on the spectroscopic observations from the CYRA and IRIS, the 3 min sunspot oscillation can be spatially resolved in the Doppler shifts. It may come from the upper photosphere or the temperature minimum region and then propagate to the chromosphere, which might be regarded as a propagating slow magnetoacoustic wave.


1988 ◽  
Vol 123 ◽  
pp. 181-182
Author(s):  
John H. Thomas ◽  
Bruce W. Lites ◽  
Toufik E. Abdelatif

The 5 minute oscillations in a sunspot umbra are the response of the sunspot to forcing by the 5 minute p-modes in the surrounding convection zone (Thomas 1981). This interaction of solar p-modes with a sunspot can be used to probe the structure of a sunspot beneath the visible surface of the Sun (Thomas, Cram, and Nye 1982). Here we report briefly the results of both an observational study and a simple theoretical analysis of this interaction. A full account of these results will be published elsewhere (Abdelatif, Lites, and Thomas 1986; Abdelatif and Thomas 1987).


Sign in / Sign up

Export Citation Format

Share Document