Cultivation of Escherichia coli to high cell densities in a dialysis reactor

1993 ◽  
Vol 39 (1) ◽  
pp. 48-52 ◽  
Author(s):  
H. Märkl ◽  
C. Zenneck ◽  
A. Ch. Dubach ◽  
James C. Ogbonna
2015 ◽  
Vol 197 (13) ◽  
pp. 2122-2128 ◽  
Author(s):  
Rebecca L. Scholz ◽  
E. Peter Greenberg

ABSTRACTMany bacteria produce secreted iron chelators called siderophores, which can be shared among cells with specific siderophore uptake systems regardless of whether the cell produces siderophores. Sharing secreted products allows freeloading, where individuals use resources without bearing the cost of production. Here we show that theEscherichia colisiderophore enterochelin is not evenly shared between producers and nonproducers. Wild-typeEscherichia coligrows well in low-iron minimal medium, and an isogenic enterochelin synthesis mutant (ΔentF) grows very poorly. The enterochelin mutant grows well in low-iron medium supplemented with enterochelin. At high cell densities the ΔentFmutant can compete equally with the wild type in low-iron medium. At low cell densities the ΔentFmutant cannot compete. Furthermore, the growth rate of the wild type is unaffected by cell density. The wild type grows well in low-iron medium even at very low starting densities. Our experiments support a model where at least some enterochelin remains associated with the cells that produce it, and the cell-associated enterochelin enables iron acquisition even at very low cell density. Enterochelin that is not retained by producing cells at low density is lost to dilution. At high cell densities, cell-free enterochelin can accumulate and be shared by all cells in the group. Partial privatization is a solution to the problem of iron acquisition in low-iron, low-cell-density habitats. Cell-free enterochelin allows for iron scavenging at a distance at higher population densities. Our findings shed light on the conditions under which freeloaders might benefit from enterochelin uptake systems.IMPORTANCESociality in microbes has become a topic of great interest. One facet of sociality is the sharing of secreted products, such as the iron-scavenging siderophores. We present evidence that theEscherichia colisiderophore enterochelin is relatively inexpensive to produce and is partially privatized such that it can be efficiently shared only at high producer cell densities. At low cell densities, cell-free enterochelin is scarce and only enterochelin producers are able to grow in low-iron medium. Because freely shared products can be exploited by freeloaders, this partial privatization may help explain how enterochelin production is stabilized inE. coliand may provide insight into when enterochelin is available for freeloaders.


1996 ◽  
Vol 49 (1-3) ◽  
pp. 45-58 ◽  
Author(s):  
V. Schroeckh ◽  
M. Kujau ◽  
U. Knüpfer ◽  
R. Wenderoth ◽  
J. Mörbe ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Remy Colin ◽  
Knut Drescher ◽  
Victor Sourjik

AbstractAt high cell density, swimming bacteria exhibit collective motility patterns, self-organized through physical interactions of a however still debated nature. Although high-density behaviours are frequent in natural situations, it remained unknown how collective motion affects chemotaxis, the main physiological function of motility, which enables bacteria to follow environmental gradients in their habitats. Here, we systematically investigate this question in the model organism Escherichia coli, varying cell density, cell length, and suspension confinement. The characteristics of the collective motion indicate that hydrodynamic interactions between swimmers made the primary contribution to its emergence. We observe that the chemotactic drift is moderately enhanced at intermediate cell densities, peaks, and is then strongly suppressed at higher densities. Numerical simulations reveal that this suppression occurs because the collective motion disturbs the choreography necessary for chemotactic sensing. We suggest that this physical hindrance imposes a fundamental constraint on high-density behaviours of motile bacteria, including swarming and the formation of multicellular aggregates and biofilms.


1991 ◽  
Vol 13 (11) ◽  
pp. 873-881 ◽  
Author(s):  
Claudia Käsehagen ◽  
Fritjof Linz ◽  
Gerlinde Kretzmer ◽  
Thomas Scheper ◽  
Karl Schügerl

2021 ◽  
Vol 9 (4) ◽  
pp. 774
Author(s):  
Vipin Chandra Kalia ◽  
Chunjie Gong ◽  
Sanjay K. S. Patel ◽  
Jung-Kul Lee

Microbes operate their metabolic activities at a unicellular level. However, it has been revealed that a few metabolic activities only prove beneficial to microbes if operated at high cell densities. These cell density-dependent activities termed quorum sensing (QS) operate through specific chemical signals. In Gram-negative bacteria, the most widely reported QS signals are acylhomoserine lactones. In contrast, a novel QS-like system has been elucidated, regulating communication between microbes and plants through strigolactones. These systems regulate bioprocesses, which affect the health of plants, animals, and human beings. This mini-review presents recent developments in the QS and QS-like signal molecules in promoting plant health.


2021 ◽  
pp. 8-19
Author(s):  
Gautam Degweker ◽  
Arvind Lali

Rapid and high yield conversion of xylose to ethanol remains a signi cant bottleneck in the cost-effective production of ethanol using mixed sugars derived from lignocellulosic biomass (LBM). The present study attempts to circumvent this by separate continuous fermentation of glucose and xylose using high cell densities of a Saccharomyces cerevisiae mutant (ICT-1) and a Scheffersomyces stipitis mutant (M1CD), respectively with the help of external micro ltration membrane assisted cell recycle. Different cell densities and aeration rates for xylose fermentation were studied for optimizing continuous fermentation. Consistent high ethanol yields and productivities of 0.46 g/g and 5.19 g/L/h with glucose; and 0.38 g/g and 1.62 g/L/h with xylose; were achieved in simple media. This provided an average ethanol yield of 0.44 g/g on combined sugars, and average productivity of 3.4 g/L/h which is higher than typical molasses-based batch ethanol fermentation. The study thus highlights the potential of high cell density recycle strategy as an effective approach for separate ethanol fermentation of LBM derived sugars.


Sign in / Sign up

Export Citation Format

Share Document