Metabolism of hybridoma cells and antibody secretion at high cell densities in dialysis tubing

1991 ◽  
Vol 13 (11) ◽  
pp. 873-881 ◽  
Author(s):  
Claudia Käsehagen ◽  
Fritjof Linz ◽  
Gerlinde Kretzmer ◽  
Thomas Scheper ◽  
Karl Schügerl
1992 ◽  
Vol 39 (1) ◽  
pp. 108-112 ◽  
Author(s):  
Ch. Cadic ◽  
B. Dupuy ◽  
I. Pianet ◽  
M. Merle ◽  
Ch. Margerin ◽  
...  

2021 ◽  
Vol 9 (4) ◽  
pp. 774
Author(s):  
Vipin Chandra Kalia ◽  
Chunjie Gong ◽  
Sanjay K. S. Patel ◽  
Jung-Kul Lee

Microbes operate their metabolic activities at a unicellular level. However, it has been revealed that a few metabolic activities only prove beneficial to microbes if operated at high cell densities. These cell density-dependent activities termed quorum sensing (QS) operate through specific chemical signals. In Gram-negative bacteria, the most widely reported QS signals are acylhomoserine lactones. In contrast, a novel QS-like system has been elucidated, regulating communication between microbes and plants through strigolactones. These systems regulate bioprocesses, which affect the health of plants, animals, and human beings. This mini-review presents recent developments in the QS and QS-like signal molecules in promoting plant health.


2021 ◽  
pp. 8-19
Author(s):  
Gautam Degweker ◽  
Arvind Lali

Rapid and high yield conversion of xylose to ethanol remains a signi cant bottleneck in the cost-effective production of ethanol using mixed sugars derived from lignocellulosic biomass (LBM). The present study attempts to circumvent this by separate continuous fermentation of glucose and xylose using high cell densities of a Saccharomyces cerevisiae mutant (ICT-1) and a Scheffersomyces stipitis mutant (M1CD), respectively with the help of external micro ltration membrane assisted cell recycle. Different cell densities and aeration rates for xylose fermentation were studied for optimizing continuous fermentation. Consistent high ethanol yields and productivities of 0.46 g/g and 5.19 g/L/h with glucose; and 0.38 g/g and 1.62 g/L/h with xylose; were achieved in simple media. This provided an average ethanol yield of 0.44 g/g on combined sugars, and average productivity of 3.4 g/L/h which is higher than typical molasses-based batch ethanol fermentation. The study thus highlights the potential of high cell density recycle strategy as an effective approach for separate ethanol fermentation of LBM derived sugars.


2018 ◽  
Vol 54 (6) ◽  
pp. 931-955 ◽  
Author(s):  
Mohsen Barmouz ◽  
Amir Hossein Behravesh

This paper reports a research work on characterization of foamed biocompatible polylactic acid–thermoplastic polyurethane blends in terms of microstructural, thermal, and physical properties. The brittleness of the polylactic acid is compensated via blending with an elastoplastic phase of thermoplastic polyurethane. A range of low bulk density foam with a high cell density was produced in a solid state foaming process. Addition of thermoplastic polyurethane phase acted against the cell growth and thus foam expansion, apparently due to its inherent lower storage modulus, which weakens the polymer matrix and leads to gas escape phenomenon. Evaluation of thermal properties showed a tangible effect of blending and foaming process on crystallization of the specimens, which confirmed that the sensitivity of polylactic acid’s crystallinity to CO2 gas saturation was reduced as a result of thermoplastic polyurethane addition. Measurement of cell diameters and cell densities of the foamed samples demonstrated formation of the fine closed cells structure as a result of suitable foaming parameters that were able to deal with stiffness and strength of the polymeric matrix.


1975 ◽  
Vol 67 (3) ◽  
pp. 518-522 ◽  
Author(s):  
I L Cameron ◽  
N C Bols

The ciliated protozoan, Tetrahymena pyriformis strain GL-C, has been used to study the effect of cell population density during starvation on the synchrony obtained after refeeding and on the number of cells arrested in G2 phase of the cell cycle. At high cell densities two peaks of division indices were observed after refeeding while only one was observed at low cell densities. Cell division began earlier in cultures starved at high cell densities. Most importantly, the proportion of cells in G2 was considerably higher in populations starved at high cell densities. When tritiated thymidine was present during the refeeding period, radioautographs of cell samples at different times showed that the first cells to exhibit division furrows contained unlabeled nuclei. The first peak in the division index after refeeding was observed only at higher cell densities and is attributed to the cells arrested in G2. These results suggest that Tetrahymena is an excellent organism to study the concept of resting stages in the cell cycle and their control.


Sign in / Sign up

Export Citation Format

Share Document