scholarly journals Regulation of Plant Mineral Nutrition by Signal Molecules

2021 ◽  
Vol 9 (4) ◽  
pp. 774
Author(s):  
Vipin Chandra Kalia ◽  
Chunjie Gong ◽  
Sanjay K. S. Patel ◽  
Jung-Kul Lee

Microbes operate their metabolic activities at a unicellular level. However, it has been revealed that a few metabolic activities only prove beneficial to microbes if operated at high cell densities. These cell density-dependent activities termed quorum sensing (QS) operate through specific chemical signals. In Gram-negative bacteria, the most widely reported QS signals are acylhomoserine lactones. In contrast, a novel QS-like system has been elucidated, regulating communication between microbes and plants through strigolactones. These systems regulate bioprocesses, which affect the health of plants, animals, and human beings. This mini-review presents recent developments in the QS and QS-like signal molecules in promoting plant health.

2000 ◽  
Vol 13 (6) ◽  
pp. 637-648 ◽  
Author(s):  
Max Teplitski ◽  
Jayne B. Robinson ◽  
Wolfgang D. Bauer

In gram-negative bacteria, many important changes in gene expression and behavior are regulated in a popula tion density-dependent fashion by N-acyl homoserine lac tone (AHL) signal molecules. Exudates from pea (Pisum sativum) seedlings were found to contain several separable activities that mimicked AHL signals in well-characterized bacterial reporter strains, stimulating AHL-regulated be haviors in some strains while inhibiting such behaviors in others. The chemical nature of the active mimic com pounds is currently unknown, but all extracted differently into organic solvents than common bacterial AHLs. Various species of higher plants in addition to pea were found to secrete AHL mimic activities. The AHL signal-mimic compounds could prove to be important in determining the outcome of interactions between higher plants and a diver sity of pathogenic, symbiotic, and saprophytic bacteria.


1986 ◽  
Vol 49 (8) ◽  
pp. 656-670 ◽  
Author(s):  
J. A. TROLLER

The effects of aw limitation on growth and metabolic activities of foodborne bacterial pathogens continue to be actively investigated in laboratories throughout the world. Perhaps the most intensive work over the past 10 years has centered on growth of Clostridium botulinum in multicomponent systems. This emphasis undoubtedly has been the result of concern about the role played by sodium nitrate in formation of nitrosamines and the possibility of a prohibition of the addition of this preservative to foods. While investigations have continued on C. botulinum and more “traditional” foodborne pathogens, a “new” group of pathogens, some of them opportunistic, has emerged. Several of these organisms are covered in this review whereas others are not for the simple reason that the water requirements of these organisms have not as yet been investigated. Particularly surprising is the lack of aw-related information on Listeria monocytogenes, Aeromonas hydrophila and colohemmorrhagic Escherichia coli. In fact, the water requirements of gram-negative bacteria in general and the Enterobacteriacae in particular seem to have been somewhat neglected. Researchers intending to do aw-related research should consider trends in the American diet and in commercial food processors that supply much of it. For example, no one can deny that consumption of fish and seafood products has increased in the diets of many Americans yet potential pathogens indigenous to these products have received little investigative work in terms of their water requirements. Scombroid poisoning, a form of histamine poisoning, may be caused by several species of gram-negative bacteria, yet we know nothing of the effect of aw on these organisms, their heat resistance, combinations with modified atmospheres, pH, preservatives, etc. Similarly, limited application of gamma irradiation for sterilization of spices has been approved by the FDA, however, the effect of aw in these irradiated systems is largely unknown. Certainly greater thermal resistance at low aw levels has been reported; however, it is surprising that investigators have not searched for a similar effect with irradiation. Despite these shortcomings, a sizeable body of literature and knowledge of aw and its effects on microorganisms has emerged. Some of the research has only begun to exploit the hard-won knowledge of how microorganisms adapt to, and cope with, environments of low aw. Based on extrapolations of these efforts and our greater awareness of these physiological facts, one can only predict even greater advancements during the next decade.


2018 ◽  
Vol 18 (10) ◽  
pp. 834-843 ◽  
Author(s):  
Ping Wang ◽  
Jing Cheng ◽  
Cong-Cong Liu ◽  
Kai Tang ◽  
Feng Xu ◽  
...  

Metallo-β-lactamases (MBLs) are a family of Zn(II)-dependent enzymes that can hydrolyze almost all β-lactam antibiotics. Horizontal transfer of the genes encoding MBLs among Gram-negative bacteria pathogens has led to the emergence of extensively drug-resistant pathogens, which now represent a major threat to human health. As there is not to date yet a clinically available MBL inhibitor, the discovery of new MBL inhibitors has great urgency. This review highlights the recent developments in the discovery of small-molecule MBL inhibitors.


2003 ◽  
Vol 69 (7) ◽  
pp. 3932-3937 ◽  
Author(s):  
Spencer V. Nyholm ◽  
Margaret J. McFall-Ngai

ABSTRACT Previous studies of the Euprymna scolopes-Vibrio fischeri symbiosis have demonstrated that, during colonization, the hatchling host secretes mucus in which gram-negative environmental bacteria amass in dense aggregations outside the sites of infection. In this study, experiments with green fluorescent protein-labeled symbiotic and nonsymbiotic species of gram-negative bacteria were used to characterize the behavior of cells in the aggregates. When hatchling animals were exposed to 103 to 106 V. fischeri cells/ml added to natural seawater, which contains a mix of approximately 106 nonspecific bacterial cells/ml, V. fischeri cells were the principal bacterial cells present in the aggregations. Furthermore, when animals were exposed to equal cell numbers of V. fischeri (either a motile or a nonmotile strain) and either Vibrio parahaemolyticus or Photobacterium leiognathi, phylogenetically related gram-negative bacteria that also occur in the host's habitat, the symbiont cells were dominant in the aggregations. The presence of V. fischeri did not compromise the viability of these other species in the aggregations, and no significant growth of V. fischeri cells was detected. These findings suggested that dominance results from the ability of V. fischeri either to accumulate or to be retained more effectively within the mucus. Viability of the V. fischeri cells was required for both the formation of tight aggregates and their dominance in the mucus. Neither of the V. fischeri quorum-sensing compounds accumulated in the aggregations, which suggested that the effects of these small signal molecules are not critical to V. fischeri dominance. Taken together, these data provide evidence that the specificity of the squid-vibrio symbiosis begins early in the interaction, in the mucus where the symbionts aggregate outside of the light organ.


1998 ◽  
Vol 64 (9) ◽  
pp. 3486-3490 ◽  
Author(s):  
David J. Stickler ◽  
Nicola S. Morris ◽  
Robert J. C. McLean ◽  
Clay Fuqua

ABSTRACT Acylated homoserine lactones (AHLs) are chemical signals that mediate population density-dependent (quorum-sensing) gene expression in numerous gram-negative bacteria. In this study, gram-negative bacilli isolated from catheters were screened for AHL production by a cross-feeding assay utilizing an AHL-responsive Agrobacterium tumefaciens reporter strain. Positive reactions were obtained from 14 isolates of Pseudomonas aeruginosa; negative or weakly positive reactions were recorded for isolates of five other species. P. aeruginosa biofilms were then produced on catheters in a physical model of the bladder. Sections of colonized all-silicone catheters gave positive reactions for the quorum-sensing signal molecules as did sections that had been cleaned of biofilm and autoclaved. Control sections of unused catheters were negative in the tests. Sections from four of nine catheters that had been freshly removed from patients gave positive reactions for AHLs. Cleaned autoclaved sections of three of these catheters also gave strongly positive reactions for AHLs. These results demonstrate that AHLs are produced by biofilms as they develop on the catheters both in vitro in the model and in vivo in the patient’s bladder. They represent the first demonstration of AHL production by biofilms in a clinical setting.


Biosensors ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 2 ◽  
Author(s):  
Palak Sondhi ◽  
Md Helal Uddin Maruf ◽  
Keith J. Stine

Lipopolysaccharides (LPS) are endotoxins, hazardous and toxic inflammatory stimulators released from the outer membrane of Gram-negative bacteria, and are the major cause of septic shock giving rise to millions of fatal illnesses worldwide. There is an urgent need to identify and detect these molecules selectively and rapidly. Pathogen detection has been done by traditional as well as biosensor-based methods. Nanomaterial based biosensors can assist in achieving these goals and have tremendous potential. The biosensing techniques developed are low-cost, easy to operate, and give a fast response. Due to extremely small size, large surface area, and scope for surface modification, nanomaterials have been used to target various biomolecules, including LPS. The sensing mechanism can be quite complex and involves the transformation of chemical interactions into amplified physical signals. Many different sorts of nanomaterials such as metal nanomaterials, magnetic nanomaterials, quantum dots, and others have been used for biosensing of LPS and have shown attractive results. This review considers the recent developments in the application of nanomaterials in sensing of LPS with emphasis given mainly to electrochemical and optical sensing.


2021 ◽  
Vol 27 ◽  
Author(s):  
Pravin Shende ◽  
Shubham Gupta

Background: Lipopolysaccharides (LPS) are considered the main molecular component in the outer membrane of gram-negative bacteria. The LPS molecule in the bacterial cell wall acts as a primary physical barrier and protects gram-negative bacteria from the surrounding environment. LPS (endotoxins) show immunomodulatory therapeutic properties as well as toxicity to the host cell, whereas potential applications encompass. Objective: This review article aims to describe the recent developments of lipopolysaccharides in nanocarrier systems for various applications such as vaccination, cancer chemotherapy and immune stimulants action. Different nanocarriers like cubosomes, niosomes, dendrimers and metal nanoparticles used in the delivery of actives are employed to decorate lipopolysaccharide molecules superficially. Methods: A narrative review of all the relevant papers known to the author was conducted. Conclusion: Commercially available lipid nanoparticles contribute to many advances as promising nanocarriers in cancer therapy and are used as a vaccine adjuvant by improving the immune response due to their properties such as size, shape, biocompatibility, and biodegradability. Whereas lipopolysaccharide-decorated nanoparticles change the host's tolerability and increase the effectiveness of molecule in cancer immunotherapy. These nanoconjugate systems enhance overall immunogenic response and effectiveness in vaccine immunotherapy and targeted therapy, not only limited to humans application but also for poultry and aquaculture. Newer opportunities using lipopolysaccharides for the treatment and management of diseases with unique characteristics like the presence of lipoprotein that act as an alternative for bacterial infections over conventional dosage forms.


2009 ◽  
Vol 56 (1) ◽  
Author(s):  
Robert Czajkowski ◽  
Sylwia Jafra

Many Gram-positive and Gram-negative bacteria communicate using small diffusible signal molecules called autoinducers. This process, known as quorum sensing (QS), links cell density to the expression of genes as diverse as those associated with virulence factors production of plant and animal pathogens, bioluminescence, antibiotic production, sporulation or biofilm formation. In Gram-negative bacteria, this communication is mainly mediated by N-acyl-homoserine lactones (AHLs). It has been proven that inactivation of the signal molecules attenuates many of the processes controlled by QS. Enzymatic degradation of the signal molecules has been amply described. Two main classes of AHL-inactivating enzymes were identified: AHL lactonases which hydrolyse the lactone ring in AHLs, and AHL acylases (syn. AHL amidases) which liberate a free homoserine lactone and a fatty acid. Recently, AHL oxidoreductase, a novel type of AHL inactivating enzyme, was described. The activity of these enzymes results in silencing the QS-regulated processes, as degradation products cannot act as signal molecules. The ability to inactivate AHL (quorum quenching, QQ) might be useful in controlling virulence of many pathogenic bacteria.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hye-Su Shin ◽  
Vinayakumar Gedi ◽  
Joon-Ki Kim ◽  
Dong-ki Lee

Abstract Infection of various pathogenic bacteria causes severe illness to human beings. Despite the research advances, current identification tools still exhibit limitations in detecting Gram-negative bacteria with high accuracy. In this study, we isolated single-stranded DNA aptamers against multiple Gram-negative bacterial species using Toggle-cell-SELEX (systemic evolution of ligands by exponential enrichment) and constructed an aptamer-based detection tool towards bacterial secretory cargo released from outer membranes of Gram-negative bacteria. Three Gram-negative bacteria, Escherichia coli DH5α, E. coli K12, and Serratia marcescens, were sequentially incubated with the pool of random DNA sequences at each SELEX loop. Two aptamers selected, GN6 and GN12, were 4.2-times and 3.6-times higher binding to 108 cells of Gram-negative bacteria than to Gram-positive bacteria tested, respectively. Using GN6 aptamer, we constructed an Enzyme-linked aptamer assay (ELAA) to detect bacterial outer membrane vesicles (OMVs) of Gram-negative bacteria, which contain several outer membrane proteins with potent immunostimulatory effects. The GN6-ELAA showed high sensitivity to detect as low as 25 ng/mL bacterial OMVs. Aptamers developed in this study show a great potential to facilitate medical diagnosis and early detection of bacterial terrorism, based on the ability to detect bacterial OMVs of multiple Gram-negative bacteria.


Sign in / Sign up

Export Citation Format

Share Document