scholarly journals Sociality in Escherichia coli: Enterochelin Is a Private Good at Low Cell Density and Can Be Shared at High Cell Density

2015 ◽  
Vol 197 (13) ◽  
pp. 2122-2128 ◽  
Author(s):  
Rebecca L. Scholz ◽  
E. Peter Greenberg

ABSTRACTMany bacteria produce secreted iron chelators called siderophores, which can be shared among cells with specific siderophore uptake systems regardless of whether the cell produces siderophores. Sharing secreted products allows freeloading, where individuals use resources without bearing the cost of production. Here we show that theEscherichia colisiderophore enterochelin is not evenly shared between producers and nonproducers. Wild-typeEscherichia coligrows well in low-iron minimal medium, and an isogenic enterochelin synthesis mutant (ΔentF) grows very poorly. The enterochelin mutant grows well in low-iron medium supplemented with enterochelin. At high cell densities the ΔentFmutant can compete equally with the wild type in low-iron medium. At low cell densities the ΔentFmutant cannot compete. Furthermore, the growth rate of the wild type is unaffected by cell density. The wild type grows well in low-iron medium even at very low starting densities. Our experiments support a model where at least some enterochelin remains associated with the cells that produce it, and the cell-associated enterochelin enables iron acquisition even at very low cell density. Enterochelin that is not retained by producing cells at low density is lost to dilution. At high cell densities, cell-free enterochelin can accumulate and be shared by all cells in the group. Partial privatization is a solution to the problem of iron acquisition in low-iron, low-cell-density habitats. Cell-free enterochelin allows for iron scavenging at a distance at higher population densities. Our findings shed light on the conditions under which freeloaders might benefit from enterochelin uptake systems.IMPORTANCESociality in microbes has become a topic of great interest. One facet of sociality is the sharing of secreted products, such as the iron-scavenging siderophores. We present evidence that theEscherichia colisiderophore enterochelin is relatively inexpensive to produce and is partially privatized such that it can be efficiently shared only at high producer cell densities. At low cell densities, cell-free enterochelin is scarce and only enterochelin producers are able to grow in low-iron medium. Because freely shared products can be exploited by freeloaders, this partial privatization may help explain how enterochelin production is stabilized inE. coliand may provide insight into when enterochelin is available for freeloaders.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Remy Colin ◽  
Knut Drescher ◽  
Victor Sourjik

AbstractAt high cell density, swimming bacteria exhibit collective motility patterns, self-organized through physical interactions of a however still debated nature. Although high-density behaviours are frequent in natural situations, it remained unknown how collective motion affects chemotaxis, the main physiological function of motility, which enables bacteria to follow environmental gradients in their habitats. Here, we systematically investigate this question in the model organism Escherichia coli, varying cell density, cell length, and suspension confinement. The characteristics of the collective motion indicate that hydrodynamic interactions between swimmers made the primary contribution to its emergence. We observe that the chemotactic drift is moderately enhanced at intermediate cell densities, peaks, and is then strongly suppressed at higher densities. Numerical simulations reveal that this suppression occurs because the collective motion disturbs the choreography necessary for chemotactic sensing. We suggest that this physical hindrance imposes a fundamental constraint on high-density behaviours of motile bacteria, including swarming and the formation of multicellular aggregates and biofilms.


2014 ◽  
Vol 82 (12) ◽  
pp. 5056-5068 ◽  
Author(s):  
Gaëlle Porcheron ◽  
Rima Habib ◽  
Sébastien Houle ◽  
Mélissa Caza ◽  
François Lépine ◽  
...  

ABSTRACTInEscherichia coli, the small regulatory noncoding RNA (sRNA) RyhB and the global ferric uptake regulator (Fur) mediate iron acquisition and storage control. Iron is both essential and potentially toxic for most living organisms, making the precise maintenance of iron homeostasis necessary for survival. While the roles of these regulators in iron homeostasis have been well studied in a nonpathogenicE. colistrain, their impact on the production of virulence-associated factors is still unknown for a pathogenicE. colistrain. We thus investigated the roles of RyhB and Fur in iron homeostasis and virulence of the uropathogenicE. coli(UPEC) strain CFT073. In a murine model of urinary tract infection (UTI), deletion offuralone did not attenuate virulence, whereas a ΔryhBmutant and a ΔfurΔryhBdouble mutant showed significantly reduced bladder colonization. The Δfurmutant was more sensitive to oxidative stress and produced more of the siderophores enterobactin, salmochelins, and aerobactin than the wild-type strain. In contrast, while RyhB was not implicated in oxidative stress resistance, the ΔryhBmutant produced lower levels of siderophores. This decrease was correlated with the downregulation ofshiA(encoding a transporter of shikimate, a precursor of enterobactin and salmochelin biosynthesis) andiucD(involved in aerobactin biosynthesis) in this mutant grown in minimal medium or in human urine.iucDwas also downregulated in bladders infected with the ΔryhBmutant compared to those infected with the wild-type strain. Our results thus demonstrate that the sRNA RyhB is involved in production of iron acquisition systems and colonization of the urinary tract by pathogenicE. coli.


2020 ◽  
Vol 88 (8) ◽  
Author(s):  
Danelle R. Weakland ◽  
Sara N. Smith ◽  
Bailey Bell ◽  
Ashootosh Tripathi ◽  
Harry L. T. Mobley

ABSTRACT Serratia marcescens is a bacterium frequently found in the environment, but over the last several decades it has evolved into a concerning clinical pathogen, causing fatal bacteremia. To establish such infections, pathogens require specific nutrients; one very limited but essential nutrient is iron. We sought to characterize the iron acquisition systems in S. marcescens isolate UMH9, which was recovered from a clinical bloodstream infection. Using RNA sequencing (RNA-seq), we identified two predicted siderophore gene clusters (cbs and sch) that were regulated by iron. Mutants were constructed to delete each iron acquisition locus individually and in conjunction, generating both single and double mutants for the putative siderophore systems. Mutants lacking the sch gene cluster lost their iron-chelating ability as quantified by the chrome azurol S (CAS) assay, whereas the cbs mutant retained wild-type activity. Mass spectrometry-based analysis identified the chelating siderophore to be serratiochelin, a siderophore previously identified in Serratia plymuthica. Serratiochelin-producing mutants also displayed a decreased growth rate under iron-limited conditions created by dipyridyl added to LB medium. Additionally, mutants lacking serratiochelin were significantly outcompeted during cochallenge with wild-type UMH9 in the kidneys and spleen after inoculation via the tail vein in a bacteremia mouse model. This result was further confirmed by an independent challenge, suggesting that serratiochelin is required for full S. marcescens pathogenesis in the bloodstream. Nine other clinical isolates have at least 90% protein identity to the UMH9 serratiochelin system; therefore, our results are broadly applicable to emerging clinical isolates of S. marcescens causing bacteremia.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Laura C. Ristow ◽  
Vy Tran ◽  
Kevin J. Schwartz ◽  
Lillie Pankratz ◽  
Andrew Mehle ◽  
...  

ABSTRACTTheEscherichia colihemolysin (HlyA) is a pore-forming exotoxin associated with severe complications of human urinary tract infections. HlyA is the prototype of the repeats-in-toxin (RTX) family, which includes LtxA fromAggregatibacter actinomycetemcomitans, a periodontal pathogen. The existence and requirement for a host cell receptor for these toxins are controversial. We performed an unbiased forward genetic selection in a mutant library of human monocytic cells, U-937, for host factors involved in HlyA cytotoxicity. The top candidate was the β2integrin β subunit. Δβ2cell lines are approximately 100-fold more resistant than wild-type U-937 cells to HlyA, but remain sensitive to HlyA at high concentrations. Similarly, Δβ2cells are more resistant than wild-type U-937 cells to LtxA, as Δβ2cells remain LtxA resistant even at >1,000-fold-higher concentrations of the toxin. Loss of any single β2integrin α subunit, or even all four α subunits together, does not confer resistance to HlyA. HlyA and LtxA bind to the β2subunit, but not to αL, αM, or αXin far-Western blots. Genetic complementation of Δβ2cells with either β2or β2with a cytoplasmic tail deletion restores HlyA and LtxA sensitivity, suggesting that β2integrin signaling is not required for cytotoxicity. Finally, β2mutations do not alter sensitivity to unrelated pore-forming toxins, as wild-type or Δβ2cells are equally sensitive toStaphylococcus aureusα-toxin andProteus mirabilisHpmA. Our studies show two RTX toxins use the β2integrin β subunit alone to facilitate cytotoxicity, but downstream integrin signaling is dispensable.IMPORTANCEUrinary tract infections are one of the most common bacterial infections worldwide. UropathogenicEscherichia colistrains are responsible for more than 80% of community-acquired urinary tract infections. Although we have known for nearly a century that severe infections stemming from urinary tract infections, including kidney or bloodstream infections are associated with expression of a toxin, hemolysin, from uropathogenicEscherichia coli, how hemolysin functions to enhance virulence is unknown. Our research defines the interaction of hemolysin with the β2integrin, a human white cell adhesion molecule, as a potential therapeutic target during urinary tract infections. TheE. colihemolysin is the prototype for a toxin family (RTX family) produced by a wide array of human and animal pathogens. Our work extends to the identification and characterization of the receptor for an additional member of the RTX family, suggesting that this interaction may be broadly conserved throughout the RTX toxin family.


2011 ◽  
Vol 77 (23) ◽  
pp. 8295-8302 ◽  
Author(s):  
Laura-Dorina Dinu ◽  
Susan Bach

ABSTRACTEscherichia coliO157:H7 continues to be an important human pathogen and has been increasingly linked to food-borne illness associated with fresh produce, particularly leafy greens. The aim of this work was to investigate the fate ofE. coliO157:H7 on the phyllosphere of lettuce under low temperature and to evaluate the potential hazard of viable but nonculturable (VBNC) cells induced under such stressful conditions. First, we studied the survival of six bacterial strains following prolonged storage in water at low temperature (4°C) and selected two strains with different nonculturable responses for the construction ofE. coliO157:H7 Tn7gfptransformants in order to quantitatively assess the occurrence of human pathogens on the plant surface. Under a suboptimal growth temperature (16°C), bothE. coliO157:H7 strains maintained culturability on lettuce leaves, but under more stressful conditions (8°C), the bacterial populations evolved toward the VBNC state. The strain-dependent nonculturable response was more evident in the experiments with different inoculum doses (109and 106E. coliO157:H7 bacteria per g of leaf) when strain BRMSID 188 lost culturability after 15 days and strain ATCC 43895 lost culturability within 7 days, regardless of the inoculum dose. However, the number of cells entering the VBNC state in high-cell-density inoculum (approximately 55%) was lower than in low-cell-density inoculum (approximately 70%). We recorded the presence of verotoxin for 3 days in samples that contained a VBNC population of 4 to 5 log10cells but did not detect culturable cells. These findings indicate thatE. coliO157:H7 VBNC cells are induced on lettuce plants, and this may have implications regarding food safety.


Author(s):  
Joshua D. Brycki ◽  
Jeremy R. Chen See ◽  
Gillian R. Letson ◽  
Cade S. Emlet ◽  
Lavinia V. Unverdorben ◽  
...  

Previous research has reported effects of the microbiome on health span and life span of Caenorhabditis elegans , including interactions with evolutionarily conserved pathways in humans. We build on this literature by reporting the gene expression of Escherichia coli OP50 in wild-type (N2) and three long-lived mutants of C. elegans .


Blood ◽  
1997 ◽  
Vol 90 (1) ◽  
pp. 234-243 ◽  
Author(s):  
Lindsey J. White ◽  
Bradford W. Ozanne ◽  
Pierre Graber ◽  
Jean-Pierre Aubry ◽  
Jean-Yves Bonnefoy ◽  
...  

Abstract Human CD23 is a 45-kD type II membrane glycoprotein, which functions as a low-affinity receptor for IgE and as a ligand for the CD21 and CD11b/CD11c differentiation antigens. CD23 is released from the surface of cells as soluble fragments, and a 25-kD species of soluble CD23 (sCD23) appears to act as a multifunctional cytokine. In this report, sCD23 is shown to sustain the growth of low cell density cultures of a human pre-B–acute lymphocytic leukemia cell line, SMS-SB: no other cytokine tested was able to induce this effect. Flow cytometric analysis indicates that sCD23 acts to prevent apoptosis of SMS-SB cells. SMS-SB cells cultured at low cell density possess low levels of bcl-2 protein. Addition of sCD23 to cells at low cell density maintained bcl-2 expression at levels equivalent to those observed in SMS-SB cells cultured at higher cell densities. No CD23 mRNA was found in SMS-SB cells, ruling out an autocrine function for CD23 in this cell line model. Although SMS-SB cells do not express the known receptors for CD23, namely CD21, CD11b-CD18, or CD11c-CD18, the cells specifically bind CD23-containing liposomes, but not glycophorin-containing liposomes. Binding of CD23-containing liposomes is inhibited by anti-CD23 but not by anti-CD21 or anti-CD11b/c monoclonal antibodies. The data show that sCD23 prevents apoptosis of the SMS-SB cell line by acting through a novel receptor.


Sign in / Sign up

Export Citation Format

Share Document