Effects of a myosin light chain kinase inhibitor, wortmannin, on cytoplasmic Ca2+ levels, myosin light chain phosphorylation and force in vascular smooth muscle

Author(s):  
Makoto Takayama ◽  
Hiroshi Ozaki ◽  
Hideaki Karaki
2018 ◽  
Vol 315 (2) ◽  
pp. H423-H428
Author(s):  
Philip S. Clifford ◽  
Brian S. Ferguson ◽  
Jeffrey L. Jasperse ◽  
Michael A. Hill

It is generally assumed that relaxation of arteriolar vascular smooth muscle occurs through hyperpolarization of the cell membrane, reduction in intracellular Ca2+ concentration, and activation of myosin light chain phosphatase/inactivation of myosin light chain kinase. We hypothesized that vasodilation is related to depolymerization of F-actin. Cremaster muscles were dissected in rats under pentobarbital sodium anesthesia (50 mg/kg). First-order arterioles were dissected, cannulated on glass micropipettes, pressurized, and warmed to 34°C. Internal diameter was monitored with an electronic video caliper. The concentration of G-actin was determined in flash-frozen intact segments of arterioles by ultracentrifugation and Western blot analyses. Arterioles dilated by ~40% of initial diameter in response to pinacidil (1 × 10−6 mM) and sodium nitroprusside (5 × 10−5 mM). The G-actin-to-smooth muscle 22α ratio was 0.67 ± 0.09 in arterioles with myogenic tone and increased significantly to 1.32 ± 0.34 ( P < 0.01) when arterioles were dilated with pinacidil and 1.14 ± 0.18 ( P < 0.01) with sodium nitroprusside, indicating actin depolymerization. Compared with control vessels (49 ± 5%), the percentage of phosphorylated myosin light chain was significantly reduced by pinacidil (24 ± 2%, P < 0.01) but not sodium nitroprusside (42 ± 4%). These findings suggest that actin depolymerization is an important mechanism for vasodilation of resistance arterioles to external agonists. Furthermore, pinacidil produces smooth muscle relaxation via both decreases in myosin light chain phosphorylation and actin depolymerization, whereas sodium nitroprusside produces smooth muscle relaxation primarily via actin depolymerization. NEW & NOTEWORTHY This article adds to the accumulating evidence on the contribution of the actin cytoskeleton to the regulation of vascular smooth muscle tone in resistance arterioles. Actin depolymerization appears to be an important mechanism for vasodilation of resistance arterioles to pharmacological agonists. Dilation to the K+ channel opener pinacidil is produced by decreases in myosin light chain phosphorylation and actin depolymerization, whereas dilation to the nitric oxide donor sodium nitroprusside occurs primarily via actin depolymerization. Listen to this article’s corresponding podcast at https://ajpheart.podbean.com/e/vascular-smooth-muscle-actin-depolymerization/ .


1996 ◽  
Vol 271 (4) ◽  
pp. H1348-H1355 ◽  
Author(s):  
N. Jin ◽  
R. A. Siddiqui ◽  
D. English ◽  
R. A. Rhoades

Two separate signal transduction pathways exist in vascular smooth muscle: one for cell growth, proliferation, and differentiation and the other for contraction. Although activation of protein tyrosine kinases is intimately involved in the signaling pathway that induces cell growth, proliferation, and differentiation, activation of myosin light chain kinase (MLCK) is an important step in the pathway leading to smooth muscle contraction. Indirect evidence suggests that “cross talk” exists between these two signaling pathways, but the common intermediates are not well defined. The purpose of this study was to determine whether a vasoconstrictor and a mitogen initiate crossover signaling between the tyrosine kinase pathway and the MLCK pathway in vascular smooth muscle. Rat aorta and pulmonary arteries were isolated and stimulated with either fetal calf serum (FCS) or phenylephrine in the presence or absence of a tyrosine kinase inhibitor (genistein) or tyrosine phosphatase inhibitor [sodium o-vanadate (Na3 VO4)]. Isometric force was recorded as a function of time; myosin light chain phosphorylation, protein tyrosine phosphorylation, and mitogen-activated protein kinase (MAPK) mobility were determined by immunoblotting. The results demonstrate that FCS, which contains a variety of growth factors known to activate tyrosine kinases, induced myosin light chain phosphorylation and contraction in vascular smooth muscle. Phenylephrine, a vasoconstrictor known to activate MLCK, induced tyrosine phosphorylation of a 42-kDa protein identified as MAPK. Tyrosine phosphorylation of this protein was inhibited by genistein and enhanced by vanadate. Genistein significantly inhibited both serum- and phenylephrine-induced myosin light chain phosphorylation as well as the serum- and phenylephrine-induced force generation, whereas vanadate enhanced these responses. These data demonstrate interrelationship between activation of the tyrosine kinase pathway and the MLCK pathway in vascular smooth muscle. These interactions may influence smooth muscle contraction and be important in the regulation of smooth muscle cell proliferation.


1994 ◽  
Vol 72 (8) ◽  
pp. 919-936 ◽  
Author(s):  
Michael P. Walsh

Vascular smooth muscle tone is regulated primarily by the sarcoplasmic free Ca2+ concentration, which determines the level of myosin phosphorylation. Stimulation of the muscle results in an increase in free [Ca2+], whereupon Ca2+ binds to calmodulin, inducing a conformational change enabling calmodulin to interact with and activate myosin light chain kinase. The active Ca2+∙calmodulin∙myosin light chain kinase complex catalyses the phosphorylation of serine-19 of the two 20-kDa light chains of myosin; this triggers cross-bridge cycling and the development of force. Relaxation follows restoration of free [Ca2+] to the resting level, whereupon calmodulin dissociates from myosin light chain kinase, which is thereby inactivated, and myosin is dephosphorylated by myosin light chain phosphatase and remains detached from actin. Overwhelming evidence now exists in favour of the central role of myosin phosphorylation–dephosphorylation in smooth muscle contraction–relaxation. However, considerable evidence supports the existence of additional, secondary mechanisms that can modulate the contractile state of smooth muscle either by altering the Ca2+ sensitivity of the contractile response or otherwise modulating one of the molecular events occurring downstream of the Ca2+ signal, e.g., the interaction of phosphorylated myosin heads with actin. The interplay of several regulatory elements confers on the contractile response of vascular smooth muscle the high degree of flexibility and adaptability required for the effective regulation of blood pressure.Key words: calcium, myosin, protein kinases, protein phosphatases, signal transduction, regulation of contraction, caldesmon, calponin.


2006 ◽  
Vol 26 (6) ◽  
pp. 1267-1272 ◽  
Author(s):  
Tatsuo Hashimoto ◽  
Minoru Kihara ◽  
Junji Ishida ◽  
Nozomi Imai ◽  
Shin-ichiro Yoshida ◽  
...  

2007 ◽  
Vol 21 (6) ◽  
Author(s):  
Josephine M Garcia‐Ferrer ◽  
Xue Lin ◽  
Hung‐Pin Liu ◽  
Reid R Townsend ◽  
Walter A Boyle

1992 ◽  
Vol 262 (6) ◽  
pp. C1437-C1445 ◽  
Author(s):  
J. D. Strauss ◽  
P. de Lanerolle ◽  
R. J. Paul

A peptide inhibitor, myosin kinase inhibitor (MKI), of myosin light chain kinase (MLCK) was tested for its effects on contractility and myosin light chain phosphorylation in Triton X-100 skinned guinea pig taenia coli. MKI is based on the amino acid sequence of the myosin light chain (residues 11-19 LC20) and is a competitive inhibitor [inhibitory constant (Ki) congruent to 10 microM] of purified MLCK with respect to myosin light chain (LC20). MKI inhibited unloaded shortening velocity (V(us)) and the calcium-sensitive ATPase activity of the skinned fibers but had no significant effect on steady-state isometric force or myosin light chain phosphorylation, as measured by IEF-polyacrylamide gel electrophoresis analysis. MKI had no significant effect on V(us) of thiophosphorylated fibers in the absence of calcium. MKI inhibited MLCK activity in protein extracts from taenia coli, as measured by radioactive phosphate incorporation into LC20. Surprisingly, MKI also inhibited the phosphatase activity of these same extracts. This peptide slowed the rate and extent of relaxation of calcium-contracted fibers and elicited a contraction in relaxed fibers. These results are consistent with the hypothesis that MKI may be a phosphatase inhibitor as well as an inhibitor of MLCK. Our data further suggest that the rate of phosphorylation-dephosphorylation turnover may be important in regulating V(us) in smooth muscle.


Sign in / Sign up

Export Citation Format

Share Document