Disturbances, lift and drag forces due to the translation of a horizontal circular cylinder in stratified water

1996 ◽  
Vol 21 (5) ◽  
pp. 387-400 ◽  
Author(s):  
Øivind A. Arntsen
1971 ◽  
Author(s):  
J.F. Beattie ◽  
L.P. Brown ◽  
B.F. Webb

Author(s):  
Ying Wang ◽  
Jianmin Yang ◽  
Tao Peng ◽  
Xin Li

Vortex-Induced Motions (VIM) under current flow is an important issue for surface piercing cylinders, such as Spar platforms and floating buoys, since it affects the motion performance of these structures greatly. In recent years this phenomenon attracts much attention and many researchers have been making efforts to deal with this problem. VIM is such a complicated phenomenon that more fundamental studies are needed to understand the essence behind VIM. This paper mainly concentrates on a circular cylinder, aiming to eliminate outside influences and reveal the inherent characteristic of vortex-induced motion mechanism. A circular cylinder with an aspect ratio of 1:2.4, which could be considered as a scale model for the hard tank of a typical Truss Spar, is studied by experimental method to investigate the surrounding fluid field, the excitation forces and Vortex-Induced Motion characteristics under various governing parameters, such as the current velocity and direction, the mooring stiffness and distribution, the use and efficiency of helical strakes, and so on. By using a simple flow visualization system, the unsteady flow passing the circular cylinder and the vortices in the wake are captured and recorded. The cylinder is tested respectively under fixed, forced-motion and elastically moored conditions. The fluid field, the vortex structures, and the lift and drag forces under fixed and forced-motion conditions are measured, the VIM performance of the cylinder with two different mooring distributions are studied, and strake efficiency is studied considering current directionality and strake height influence.


2015 ◽  
Vol 26 (08) ◽  
pp. 1550088 ◽  
Author(s):  
Jafar Ghazanfarian ◽  
Roozbeh Saghatchi ◽  
Mofid Gorji-Bandpy

This paper studies the two-dimensional (2D) water-entry and exit of a rotating circular cylinder using the Sub-Particle Scale (SPS) turbulence model of a Lagrangian particle-based Smoothed-Particle Hydrodynamics (SPH) method. The full Navier–Stokes (NS) equations along with the continuity have been solved as the governing equations of the problem. The accuracy of the numerical code is verified using the case of water-entry and exit of a nonrotating circular cylinder. The numerical simulations of water-entry and exit of the rotating circular cylinder are performed at Froude numbers of 2, 5, 8, and specific gravities of 0.25, 0.5, 0.75, 1, 1.75, rotating at the dimensionless rates of 0, 0.25, 0.5, 0.75. The effect of governing parameters and vortex shedding behind the cylinder on the trajectory curves, velocity components in the flow field, and the deformation of free surface for both cases have been investigated in detail. It is seen that the rotation has a great effect on the curvature of the trajectory path and velocity components in water-entry and exit cases due to the interaction of imposed lift and drag forces with the inertia force.


Apparatus is described for measuring directly fluctuating lift and drag forces and steady mean drag force. These forces are exerted upon a cylinder placed so that its central axis is perpendicular to the direction of flow of water in a channel. Results are given for the stationary cylinder for the range of Reynolds number 3600 to 11 000.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Behzad Ghadiri Dehkordi ◽  
Hamed Houri Jafari

Flow over a circular cylinder with detached short splitter-plates is numerically simulated in order to assess the suppression of periodic vortex shedding. A finite-volume solver based on the Cartesian-staggered grid is implemented, and the ghost-cell method in conjunction with Great-Source-Term technique is employed in order to enforce directly the no-slip condition on the cylinder boundary. The accuracy of the solver is validated by simulation of the flow around a single circular cylinder. The results are in good agreement with the experimental data reported in the literature. Finally, the flows over a circular cylinder with splitter-plate in its downstream (off and on the centerline) are computed in Re=40 as a nonvortex shedding case and in Re=100 and 150 as cases with vortex shedding effects. The same simulations are also performed for the case where dual splitter-plates are in a parallel arrangement embedded in the downstream of the cylinder. The optimum location of the splitter-plate to achieve maximum reduction in the lift and drag forces is determined.


Author(s):  
Zhiyong Huang ◽  
Carl M. Larsen

A two-dimensional numerical simulation is applied to study the forces and responses associated with vortex-induced vibration of an elastically mounted circular cylinder with two degrees-of-freedom, i.e. the cylinder vibrates in in-line and cross-flow directions. This work could be regarded as a first step to carry out the prediction of vortex-induced-vibration responses of a long flexible beam with a number of two-dimension sections along the spanwise based on strip theory. A direct comparison has been made between the numerical results and measured data from the experiment by Jauvtis and Williamson in 2004. The peak cross flow response reaches 1.28 diameters in the present simulations. The profiles between the displacement and transverse force are found to have a good match with the experimental results, and a typical figure of ‘8’ trace is observed between the lift and drag forces in the initial and super-upper branches. Two typical in-line wake structures SS mode and AS mode are well reproduced in the low reduced velocity range. The newly discovered wake pattern 2T mode corresponds to the super-upper branch is also recaptured. Comparison shows that most features of the experiment can be reproduced by the present numerical model, and this model can be regarded a robust tool to investigate the responses, forces and the basic mechanics of vortex induced vibrations of an elastically mounted cylinder with two degrees-of-freedom.


A circular cylinder was placed in a flowing fluid with its axis across the stream. The fluctuating lift and drag forces, and the steady drag force were measured. The results for the stationary cylinder were given in a previous paper (Bishop & Hassan 1964). Here, the results are described and summarized for a cylinder that is made to oscillate transversely in a direction perpendicular to the stream.


1963 ◽  
Vol 30 (1) ◽  
pp. 16-24 ◽  
Author(s):  
Turgut Sarpkaya ◽  
C. J. Garrison

The strength, growth, and motion of vortices behind a circular cylinder immersed in a two-dimensional uniform flow with constant acceleration are analyzed. Equations for lift and drag forces are obtained from potential theory in terms of the flow and vortex characteristics. By combining the theoretical equations with the experimental results, drag and inertia coefficients are separated and shown to be a function of the relative displacement of the fluid. The results are striking evidence of the existence of a unique relationship between the drag and inertia coefficients.


Sign in / Sign up

Export Citation Format

Share Document