Vortex Formation and Resistance in Unsteady Flow

1963 ◽  
Vol 30 (1) ◽  
pp. 16-24 ◽  
Author(s):  
Turgut Sarpkaya ◽  
C. J. Garrison

The strength, growth, and motion of vortices behind a circular cylinder immersed in a two-dimensional uniform flow with constant acceleration are analyzed. Equations for lift and drag forces are obtained from potential theory in terms of the flow and vortex characteristics. By combining the theoretical equations with the experimental results, drag and inertia coefficients are separated and shown to be a function of the relative displacement of the fluid. The results are striking evidence of the existence of a unique relationship between the drag and inertia coefficients.

1970 ◽  
Vol 4 (1) ◽  
pp. 27-42 ◽  
Author(s):  
Md Mahbubar Rahman ◽  
Md. Mashud Karim ◽  
Md Abdul Alim

The dynamic characteristics of the pressure and velocity fields of unsteady incompressible laminar and turbulent wakes behind a circular cylinder are investigated numerically and analyzed physically. The governing equations, written in the velocity pressure formulation are solved using 2-D finite volume method. The initial mechanism for vortex shedding is demonstrated and unsteady body forces are evaluated. The turbulent flow for Re = 1000 & 3900 are simulated using k-? standard, k-? Realizable and k-? SST turbulence models. The capabilities of these turbulence models to compute lift and drag coefficients are also verified. The frequencies of the drag and lift oscillations obtained theoretically agree well with the experimental results. The pressure and drag coefficients for different Reynolds numbers were also computed and compared with experimental and other numerical results. Due to faster convergence, 2-D finite volume method is found very much prospective for turbulent flow as well as laminar flow.Keywords: Viscous unsteady flow, laminar & turbulent flow, finite volume method, circular cylinder.DOI: 10.3329/jname.v4i1.914Journal of Naval Architecture and Marine Engineering 4(2007) 27-42


1971 ◽  
Author(s):  
J.F. Beattie ◽  
L.P. Brown ◽  
B.F. Webb

Author(s):  
Ying Wang ◽  
Jianmin Yang ◽  
Tao Peng ◽  
Xin Li

Vortex-Induced Motions (VIM) under current flow is an important issue for surface piercing cylinders, such as Spar platforms and floating buoys, since it affects the motion performance of these structures greatly. In recent years this phenomenon attracts much attention and many researchers have been making efforts to deal with this problem. VIM is such a complicated phenomenon that more fundamental studies are needed to understand the essence behind VIM. This paper mainly concentrates on a circular cylinder, aiming to eliminate outside influences and reveal the inherent characteristic of vortex-induced motion mechanism. A circular cylinder with an aspect ratio of 1:2.4, which could be considered as a scale model for the hard tank of a typical Truss Spar, is studied by experimental method to investigate the surrounding fluid field, the excitation forces and Vortex-Induced Motion characteristics under various governing parameters, such as the current velocity and direction, the mooring stiffness and distribution, the use and efficiency of helical strakes, and so on. By using a simple flow visualization system, the unsteady flow passing the circular cylinder and the vortices in the wake are captured and recorded. The cylinder is tested respectively under fixed, forced-motion and elastically moored conditions. The fluid field, the vortex structures, and the lift and drag forces under fixed and forced-motion conditions are measured, the VIM performance of the cylinder with two different mooring distributions are studied, and strake efficiency is studied considering current directionality and strake height influence.


1998 ◽  
Vol 64 (628) ◽  
pp. 4010-4015
Author(s):  
Shiki OKAMOTO ◽  
Jun TAKENAKA ◽  
Masao KAWAMURA ◽  
Shinya YOSHIKAWA

2015 ◽  
Vol 26 (08) ◽  
pp. 1550088 ◽  
Author(s):  
Jafar Ghazanfarian ◽  
Roozbeh Saghatchi ◽  
Mofid Gorji-Bandpy

This paper studies the two-dimensional (2D) water-entry and exit of a rotating circular cylinder using the Sub-Particle Scale (SPS) turbulence model of a Lagrangian particle-based Smoothed-Particle Hydrodynamics (SPH) method. The full Navier–Stokes (NS) equations along with the continuity have been solved as the governing equations of the problem. The accuracy of the numerical code is verified using the case of water-entry and exit of a nonrotating circular cylinder. The numerical simulations of water-entry and exit of the rotating circular cylinder are performed at Froude numbers of 2, 5, 8, and specific gravities of 0.25, 0.5, 0.75, 1, 1.75, rotating at the dimensionless rates of 0, 0.25, 0.5, 0.75. The effect of governing parameters and vortex shedding behind the cylinder on the trajectory curves, velocity components in the flow field, and the deformation of free surface for both cases have been investigated in detail. It is seen that the rotation has a great effect on the curvature of the trajectory path and velocity components in water-entry and exit cases due to the interaction of imposed lift and drag forces with the inertia force.


Apparatus is described for measuring directly fluctuating lift and drag forces and steady mean drag force. These forces are exerted upon a cylinder placed so that its central axis is perpendicular to the direction of flow of water in a channel. Results are given for the stationary cylinder for the range of Reynolds number 3600 to 11 000.


1973 ◽  
Vol 61 (4) ◽  
pp. 769-784 ◽  
Author(s):  
Y. Tanida ◽  
A. Okajima ◽  
Y. Watanabe

The lift and drag forces were measured on both a single circular cylinder and tandem circular cylinders in uniform flow at Reynolds numbers from 40 to 104, to investigate the stability of an oscillating cylinder. A cylinder (the downstream one in the tandem case) was made to oscillate in either the transverse or longitudinal direction (perpendicular or parallel to the stream). In the case of a single cylinder, its oscillation causes the so-called synchronization in a frequency range around the Strouhal frequency (transverse mode) or double the Strouhal frequency (longitudinal mode). The aerodynamic damping for transverse oscillation becomes negative in the synchronization range. In the case of tandem cylinders, at low Reynolds numbers in the pure Kármán range synchronization was observed to occur only when the downstream cylinder oscillated inside the vortex-formation region of the upstream one, and at high (low subcritical) Reynolds numbers synchronization occurred irrespective of the cylinder spacing in either oscillating mode. In the tandem case, too, the transverse oscillation of the downstream cylinder becomes unstable in the range of synchronization.


2017 ◽  
Vol 813 ◽  
pp. 85-109 ◽  
Author(s):  
Feifei Tong ◽  
Liang Cheng ◽  
Chengwang Xiong ◽  
Scott Draper ◽  
Hongwei An ◽  
...  

Two-dimensional direct numerical simulation and Floquet stability analysis have been performed at moderate Keulegan–Carpenter number ($KC$) and low Reynolds number ($Re$) for a square cross-section cylinder with its face normal to the oscillatory flow. Based on the numerical simulations a map of flow regimes is formed and compared to the map of flow around an oscillating circular cylinder by Tatsuno & Bearman (J. Fluid Mech., vol. 211, 1990, pp. 157–182). Two new flow regimes have been observed, namely A$^{\prime }$ and F$^{\prime }$. The regime A$^{\prime }$ found at low $KC$ is characterised by the transverse convection of fluid particles perpendicular to the motion; and the regime F$^{\prime }$ found at high $KC$ shows a quasi-periodic feature with a well-defined secondary period, which is larger than the oscillation period. The Floquet analysis demonstrates that when the two-dimensional flow breaks the reflection symmetry about the axis of oscillation, the quasi-periodic instability and the synchronous instability with the imposed oscillation occur alternately for the square cylinder along the curve of marginal stability. This alternate pattern in instabilities leads to four distinct flow regimes. When compared to the vortex shedding in otherwise unidirectional flow, the two quasi-periodic flow regimes are observed when the oscillation frequency is close to the Strouhal frequency (or to half of it). Both the flow regimes and marginal stability curve shift in the $(Re,KC)$-space compared to the oscillatory flow around a circular cylinder and this shift appears to be consistent with the change in vortex formation time associated with the lower Strouhal frequency of the square cylinder.


Sign in / Sign up

Export Citation Format

Share Document