Experiences and perspective in compiling long-term remote sensing data sets on landscapes and biospheric processes

GeoJournal ◽  
1990 ◽  
Vol 20 (2) ◽  
Author(s):  
SamuelN. Goward
Author(s):  
Albert Rango ◽  
Jerry Ritchie

Like other rangelands, little application of remote sensing data for measurement and monitoring has taken place within the Jornada Basin. Although remote sensing data in the form of aerial photographs were acquired as far back as 1935 over portions of the Jornada Basin, little reliance was placed on these data. With the launch of Earth resources satellites in 1972, a variety of sensors have been available to collect remote sensing data. These sensors are typically satellite-based but can be used from other platforms including ground-based towers and hand-held apparatus, low-altitude aircraft, and high-altitude aircraft with various resolutions (now as good as 0.61 m) and spectral capabilities. A multispectral, multispatial, and multitemporal remote sensing approach would be ideal for extrapolating ground-based point and plot knowledge to large areas or landscape units viewed from satellite-based platforms. This chapter details development and applications of long-term remotely sensed data sets that are used in concert with other long-term data to provide more comprehensive knowledge for management of rangeland across this basin and as a template for their use for rangeland management in other regions. In concert with the ongoing Jornada Basin research program of ground measurements, in 1995 we began to collect remotely sensed data from ground, airborne, and satellite platforms to provide spatial and temporal data on the physical and biological state of basin rangeland. Data on distribution and reflectance of vegetation were measured on the ground along preestablished transects with detailed vegetation surveys (cover, composition, and height); with hand-held and yoke-mounted spectral and thermal radiometers; from aircraft flown at different elevations with spectral and thermal radiometers, infrared thermal radiometers, multispectral video, digital imagers, and laser altimeters; and from space with Landsat Thematic Mapper (TM), IKONOS, QuickBird, Terra/Aqua, and other satellite-based sensors. These different platforms (ground, aircraft, and satellite) allow evaluation of landscape patterns and states at different scales. One general use of these measurements will be to quantify the hydrologic budget and plant response to changes in components in the water and energy balance at different scales and to evaluate techniques of scaling data.


2017 ◽  
Vol 21 (9) ◽  
pp. 4747-4765 ◽  
Author(s):  
Clara Linés ◽  
Micha Werner ◽  
Wim Bastiaanssen

Abstract. The implementation of drought management plans contributes to reduce the wide range of adverse impacts caused by water shortage. A crucial element of the development of drought management plans is the selection of appropriate indicators and their associated thresholds to detect drought events and monitor the evolution. Drought indicators should be able to detect emerging drought processes that will lead to impacts with sufficient anticipation to allow measures to be undertaken effectively. However, in the selection of appropriate drought indicators, the connection to the final impacts is often disregarded. This paper explores the utility of remotely sensed data sets to detect early stages of drought at the river basin scale and determine how much time can be gained to inform operational land and water management practices. Six different remote sensing data sets with different spectral origins and measurement frequencies are considered, complemented by a group of classical in situ hydrologic indicators. Their predictive power to detect past drought events is tested in the Ebro Basin. Qualitative (binary information based on media records) and quantitative (crop yields) data of drought events and impacts spanning a period of 12 years are used as a benchmark in the analysis. Results show that early signs of drought impacts can be detected up to 6 months before impacts are reported in newspapers, with the best correlation–anticipation relationships for the standard precipitation index (SPI), the normalised difference vegetation index (NDVI) and evapotranspiration (ET). Soil moisture (SM) and land surface temperature (LST) offer also good anticipation but with weaker correlations, while gross primary production (GPP) presents moderate positive correlations only for some of the rain-fed areas. Although classical hydrological information from water levels and water flows provided better anticipation than remote sensing indicators in most of the areas, correlations were found to be weaker. The indicators show a consistent behaviour with respect to the different levels of crop yield in rain-fed areas among the analysed years, with SPI, NDVI and ET providing again the stronger correlations. Overall, the results confirm remote sensing products' ability to anticipate reported drought impacts and therefore appear as a useful source of information to support drought management decisions.


Eos ◽  
2017 ◽  
Author(s):  
Zhong Liu ◽  
James Acker

Using satellite remote sensing data sets can be a daunting task. Giovanni, a Web-based tool, facilitates access, visualization, and exploration for many of NASA’s Earth science data sets.


2020 ◽  
Vol 12 (14) ◽  
pp. 2208 ◽  
Author(s):  
Stanisław Szombara ◽  
Paulina Lewińska ◽  
Anna Żądło ◽  
Marta Róg ◽  
Kamil Maciuk

Analyses of riverbed shape evolution are crucial for environmental protection and local water management. For narrow rivers located in forested, mountain areas, it is difficult to use remote sensing data used for large river regions. We performed a study of the Prądnik River, located in the Ojców National Park (ONP), Poland. A multitemporal analysis of various data sets was performed. Light detection and ranging (LiDAR)-based data and orthophotomaps were compared with classical survey methods, and 78 cross-sectional profiles were done via GNSS and tachymetry. In order to add an extra time step, the old maps of this region were gathered, and their content was compared with contemporary data. The analysis of remote sensing data suggests that they do not provide sufficient information on the state and changes of riverbanks, river course or river depth. LiDAR data sets do not show river bottoms, and, due to plant life, do not document riverbanks. The orthophotomaps, due to tree coverage and shades, cannot be used for tracking the whole river course. The quality of old maps allows only for general shape analysis over time. This paper shows that traditional survey methods provide sufficient accuracy for such analysis, and the resulted cross-sectional profiles can and should be used to validate other, remote sensing, data sets. We diagnosed problems with the inventory and monitoring of such objects and proposed methods to refine the data acquisition.


Sign in / Sign up

Export Citation Format

Share Document