Neurons signalling the maintenance of attentive fixation in frontal area 6a? of macaque monkey

1990 ◽  
Vol 82 (1) ◽  
Author(s):  
L. Bon ◽  
C. Lucchetti
2020 ◽  
Vol 133 (5) ◽  
pp. 1503-1515 ◽  
Author(s):  
Spyridon Komaitis ◽  
Aristotelis V. Kalyvas ◽  
Georgios P. Skandalakis ◽  
Evangelos Drosos ◽  
Evgenia Lani ◽  
...  

OBJECTIVEThe purpose of this study was to investigate the morphology, connectivity, and correlative anatomy of the longitudinal group of fibers residing in the frontal area, which resemble the anterior extension of the superior longitudinal fasciculus (SLF) and were previously described as the frontal longitudinal system (FLS).METHODSFifteen normal adult formalin-fixed cerebral hemispheres collected from cadavers were studied using the Klingler microdissection technique. Lateral to medial dissections were performed in a stepwise fashion starting from the frontal area and extending to the temporoparietal regions.RESULTSThe FLS was consistently identified as a fiber pathway residing just under the superficial U-fibers of the middle frontal gyrus or middle frontal sulcus (when present) and extending as far as the frontal pole. The authors were able to record two different configurations: one consisting of two distinct, parallel, longitudinal fiber chains (13% of cases), and the other consisting of a single stem of fibers (87% of cases). The fiber chains’ cortical terminations in the frontal and prefrontal area were also traced. More specifically, the FLS was always recorded to terminate in Brodmann areas 6, 46, 45, and 10 (premotor cortex, dorsolateral prefrontal cortex, pars triangularis, and frontal pole, respectively), whereas terminations in Brodmann areas 4 (primary motor cortex), 47 (pars orbitalis), and 9 were also encountered in some specimens. In relation to the SLF system, the FLS represented its anterior continuation in the majority of the hemispheres, whereas in a few cases it was recorded as a completely distinct tract. Interestingly, the FLS comprised shorter fibers that were recorded to interconnect exclusively frontal areas, thus exhibiting different fiber architecture when compared to the long fibers forming the SLF.CONCLUSIONSThe current study provides consistent, focused, and robust evidence on the morphology, architecture, and correlative anatomy of the FLS. This fiber system participates in the axonal connectivity of the prefrontal-premotor cortices and allegedly subserves cognitive-motor functions. Based in the SLF hypersegmentation concept that has been advocated by previous authors, the FLS should be approached as a distinct frontal segment within the superior longitudinal system.


Author(s):  
Sarah F. Beul ◽  
Alexandros Goulas ◽  
Claus C. Hilgetag

AbstractStructural connections between cortical areas form an intricate network with a high degree of specificity. Many aspects of this complex network organization in the adult mammalian cortex are captured by an architectonic type principle, which relates structural connections to the architectonic differentiation of brain regions. In particular, the laminar patterns of projection origins are a prominent feature of structural connections that varies in a graded manner with the relative architectonic differentiation of connected areas in the adult brain. Here we show that the architectonic type principle is already apparent for the laminar origins of cortico-cortical projections in the immature cortex of the macaque monkey. We find that prenatal and neonatal laminar patterns correlate with cortical architectonic differentiation, and that the relation of laminar patterns to architectonic differences between connected areas is not substantially altered by the complete loss of visual input. Moreover, we find that the degree of change in laminar patterns that projections undergo during development varies in proportion to the relative architectonic differentiation of the connected areas. Hence, it appears that initial biases in laminar projection patterns become progressively strengthened by later developmental processes. These findings suggest that early neurogenetic processes during the formation of the brain are sufficient to establish the characteristic laminar projection patterns. This conclusion is in line with previously suggested mechanistic explanations underlying the emergence of the architectonic type principle and provides further constraints for exploring the fundamental factors that shape structural connectivity in the mammalian brain.


NeuroImage ◽  
2021 ◽  
Vol 231 ◽  
pp. 117843 ◽  
Author(s):  
Meiqi Niu ◽  
Lucija Rapan ◽  
Thomas Funck ◽  
Seán Froudist-Walsh ◽  
Ling Zhao ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Sidney R. Lehky ◽  
Keiji Tanaka ◽  
Anne B. Sereno

AbstractWhen measuring sparseness in neural populations as an indicator of efficient coding, an implicit assumption is that each stimulus activates a different random set of neurons. In other words, population responses to different stimuli are, on average, uncorrelated. Here we examine neurophysiological data from four lobes of macaque monkey cortex, including V1, V2, MT, anterior inferotemporal cortex, lateral intraparietal cortex, the frontal eye fields, and perirhinal cortex, to determine how correlated population responses are. We call the mean correlation the pseudosparseness index, because high pseudosparseness can mimic statistical properties of sparseness without being authentically sparse. In every data set we find high levels of pseudosparseness ranging from 0.59–0.98, substantially greater than the value of 0.00 for authentic sparseness. This was true for synthetic and natural stimuli, as well as for single-electrode and multielectrode data. A model indicates that a key variable producing high pseudosparseness is the standard deviation of spontaneous activity across the population. Consistently high values of pseudosparseness in the data demand reconsideration of the sparse coding literature as well as consideration of the degree to which authentic sparseness provides a useful framework for understanding neural coding in the cortex.


2012 ◽  
Vol 28 (3) ◽  
pp. 317-323 ◽  
Author(s):  
Vincent Chabroux ◽  
Caroline Barelle ◽  
Daniel Favier

The present work is focused on the aerodynamic study of different parameters, including both the posture of a cyclist’s upper limbs and the saddle position, in time trial (TT) stages. The aerodynamic influence of a TT helmet large visor is also quantified as a function of the helmet inclination. Experiments conducted in a wind tunnel on nine professional cyclists provided drag force and frontal area measurements to determine the drag force coefficient. Data statistical analysis clearly shows that the hands positioning on shifters and the elbows joined together are significantly reducing the cyclist drag force. Concerning the saddle position, the drag force is shown to be significantly increased (about 3%) when the saddle is raised. The usual helmet inclination appears to be the inclination value minimizing the drag force. Moreover, the addition of a large visor on the helmet is shown to provide a drag coefficient reduction as a function of the helmet inclination. Present results indicate that variations in the TT cyclist posture, the saddle position and the helmet visor can produce a significant gain in time (up to 2.2%) during stages.


2016 ◽  
Vol 26 (3) ◽  
pp. 422-437 ◽  
Author(s):  
Shi Ling Chen ◽  
Jun Lu ◽  
Wei Wei Yu

In this paper, a new frontal area index (FAI) mapping method is presented to describe the surface roughness of Renhuai, as an example of typical medium high mountain gorge type Karst city. Comparing with the traditional calculating method of FAI, a local topography (hills) factor is added to the calculation of the FAI in each 100 m × 100 m grid cell. The results show that the modified FAI is more strongly related to the mountainous land-use type than traditional, and local topography regions with large podium structure had higher values than other urban land-use types in mountainous city. With the frontal area index mapping procedure and a self-compiled least cost path analysis method, the potential airflow corridors traversing through the study area can be located, and the total computation time is shorter and less than 1 s. Air volume, a significant measurement index of urban ventilation capacity, is then simulated in computational fluid dynamics model (CFD-PHOENICS) to confirm the significance and efficiency of these specific ventilation corridors. Based on our findings, the government and urban planners may use the descendent maps to understand the urban ventilation paths within a mountainous city for urban local renovation decisions.


Sign in / Sign up

Export Citation Format

Share Document