Crustacean cardioactive peptide-immunoreactive neurons in the ventral nerve cord and the brain of the meal beetle Tenebrio molitor during postembryonic development

1991 ◽  
Vol 265 (1) ◽  
pp. 129-144 ◽  
Author(s):  
Olaf Breidbach ◽  
Heinrich Dircksen
1967 ◽  
Vol 99 (12) ◽  
pp. 1298-1303 ◽  
Author(s):  
G. H. Gerber

AbstractVentral nerve cord severence in newly emerged females of Tenebrio molitor L. resulted in a rate of oocyte production significantly higher than in normal, mated females and much higher than in intact virgins. This suggests that some nervous, inhibitory factor normally controls oocyte production. Mating partially suppresses this inhibitory mechanism, but the higher rate of oocyte production in females with severed nerve cords indicates that the inhibitory mechanism is exercising some control over oocyte production at all times. A sequence of events in the control of oocyte production in Tenebrio is proposed.


2016 ◽  
Vol 300 (2) ◽  
pp. 415-424
Author(s):  
Shun Wang ◽  
Zhe Dong ◽  
Shen Li ◽  
Haotian Yin ◽  
Zhifu Zhao ◽  
...  

Author(s):  
D. Benzid ◽  
C. Morris ◽  
R.-M. Barthélémy

This investigation constitutes the first study of the serotoninergic nervous system in calanoid copepods (crustaceans). Serotonin (5-HT), a neurotransmitter which plays a part in many biological processes, has been detected by immunofluorescence in the brain, the circumoesophageal collar and the ventral nerve cord of the marine species Centropages typicus.


2015 ◽  
Vol 6 (1) ◽  
Author(s):  
William C. Lemon ◽  
Stefan R. Pulver ◽  
Burkhard Höckendorf ◽  
Katie McDole ◽  
Kristin Branson ◽  
...  

Abstract Understanding how the brain works in tight concert with the rest of the central nervous system (CNS) hinges upon knowledge of coordinated activity patterns across the whole CNS. We present a method for measuring activity in an entire, non-transparent CNS with high spatiotemporal resolution. We combine a light-sheet microscope capable of simultaneous multi-view imaging at volumetric speeds 25-fold faster than the state-of-the-art, a whole-CNS imaging assay for the isolated Drosophila larval CNS and a computational framework for analysing multi-view, whole-CNS calcium imaging data. We image both brain and ventral nerve cord, covering the entire CNS at 2 or 5 Hz with two- or one-photon excitation, respectively. By mapping network activity during fictive behaviours and quantitatively comparing high-resolution whole-CNS activity maps across individuals, we predict functional connections between CNS regions and reveal neurons in the brain that identify type and temporal state of motor programs executed in the ventral nerve cord.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Aaron M Allen ◽  
Megan C Neville ◽  
Sebastian Birtles ◽  
Vincent Croset ◽  
Christoph Daniel Treiber ◽  
...  

The Drosophila ventral nerve cord (VNC) receives and processes descending signals from the brain to produce a variety of coordinated locomotor outputs. It also integrates sensory information from the periphery and sends ascending signals to the brain. We used single-cell transcriptomics to generate an unbiased classification of cellular diversity in the VNC of five-day old adult flies. We produced an atlas of 26,000 high-quality cells, representing more than 100 transcriptionally distinct cell types. The predominant gene signatures defining neuronal cell types reflect shared developmental histories based on the neuroblast from which cells were derived, as well as their birth order. The relative position of cells along the anterior-posterior axis could also be assigned using adult Hox gene expression. This single-cell transcriptional atlas of the adult fly VNC will be a valuable resource for future studies of neurodevelopment and behavior.


Sign in / Sign up

Export Citation Format

Share Document