scholarly journals Whole-central nervous system functional imaging in larval Drosophila

2015 ◽  
Vol 6 (1) ◽  
Author(s):  
William C. Lemon ◽  
Stefan R. Pulver ◽  
Burkhard Höckendorf ◽  
Katie McDole ◽  
Kristin Branson ◽  
...  

Abstract Understanding how the brain works in tight concert with the rest of the central nervous system (CNS) hinges upon knowledge of coordinated activity patterns across the whole CNS. We present a method for measuring activity in an entire, non-transparent CNS with high spatiotemporal resolution. We combine a light-sheet microscope capable of simultaneous multi-view imaging at volumetric speeds 25-fold faster than the state-of-the-art, a whole-CNS imaging assay for the isolated Drosophila larval CNS and a computational framework for analysing multi-view, whole-CNS calcium imaging data. We image both brain and ventral nerve cord, covering the entire CNS at 2 or 5 Hz with two- or one-photon excitation, respectively. By mapping network activity during fictive behaviours and quantitatively comparing high-resolution whole-CNS activity maps across individuals, we predict functional connections between CNS regions and reveal neurons in the brain that identify type and temporal state of motor programs executed in the ventral nerve cord.

1989 ◽  
Vol 147 (1) ◽  
pp. 457-470 ◽  
Author(s):  
JAMES W. TRUMAN ◽  
PHILIP F. COPENHAVER

Larval and pupal ecdyses of the moth Manduca sexta are triggered by eclosion hormone (EH) released from the ventral nervous system. The major store of EH activity in the latter resides in the proctodeal nerves that extend along the larval hindgut. At pupal ecdysis, the proctodeal nerves show a 90% depletion of stored activity, suggesting that they are the major release site for the circulating EH that causes ecdysis. Surgical experiments involving the transection of the nerve cord or removal of parts of the brain showed that the proctodeal nerve activity originates from the brain. Retrograde and anterograde cobalt fills and immunocytochemistry using antibodies against EH revealed two pairs of neurons that reside in the ventromedial region of the brain and whose axons travel ipsilaterally along the length of the central nervous system (CNS) and project into the proctodeal nerve, where they show varicose release sites. These neurons constitute a novel neuroendocrine pathway in insects which appears to be dedicated solely to the release of EH.


Crustaceana ◽  
2020 ◽  
Vol 93 (9-10) ◽  
pp. 1123-1134
Author(s):  
Kanjana Khornchatri ◽  
Jirawat Saetan ◽  
Sirirak Mukem ◽  
Prasert Sobhon ◽  
Tipsuda Thongbuakaew

Abstract Gamma-aminobutyric acid (GABA) is a neurotransmitter that is widely spread in vertebrate and invertebrate nervous systems and modulates essential physiological roles. Previous studies have reported the distribution of several neurotransmitters throughout the central nervous system (CNS) of decapod crustaceans. However, the existence and distribution of GABA in the mud crab’s, Scylla olivacea, CNS has still not been reported. In this study, we investigated the distribution of GABA using immunohistochemistry. The result revealed that GABA immunoreactivity (-ir) was observed in neurons and fibres throughout the CNS, including the eyestalk, brain, and ventral nerve cord of S. olivacea. Therefore, the existence and extensive distribution pattern of GABA in the CNS of the male mud crab suggest its possible roles in feeding, locomotion, and also reproduction.


Author(s):  
D. Benzid ◽  
C. Morris ◽  
R.-M. Barthélémy

This investigation constitutes the first study of the serotoninergic nervous system in calanoid copepods (crustaceans). Serotonin (5-HT), a neurotransmitter which plays a part in many biological processes, has been detected by immunofluorescence in the brain, the circumoesophageal collar and the ventral nerve cord of the marine species Centropages typicus.


2015 ◽  
Vol 112 (37) ◽  
pp. E5169-E5178 ◽  
Author(s):  
Ieva Gailite ◽  
Birgit L. Aerne ◽  
Nicolas Tapon

The Hippo (Hpo) pathway is a highly conserved tumor suppressor network that restricts developmental tissue growth and regulates stem cell proliferation and differentiation. At the heart of the Hpo pathway is the progrowth transcriptional coactivator Yorkie [Yki–Yes-activated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) in mammals]. Yki activity is restricted through phosphorylation by the Hpo/Warts core kinase cascade, but increasing evidence indicates that core kinase-independent modes of regulation also play an important role. Here, we examine Yki regulation in the Drosophila larval central nervous system and uncover a Hpo/Warts-independent function for the tumor suppressor kinase liver kinase B1 (LKB1) and its downstream effector, the energy sensor AMP-activated protein kinase (AMPK), in repressing Yki activity in the central brain/ventral nerve cord. Although the Hpo/Warts core cascade restrains Yki in the optic lobe, it is dispensable for Yki target gene repression in the late larval central brain/ventral nerve cord. Thus, we demonstrate a dramatically different wiring of Hpo signaling in neighboring cell populations of distinct developmental origins in the central nervous system.


2021 ◽  
pp. 42-47
Author(s):  
I. V. Damulin ◽  
A. A. Strutzenko

The aim. To systematize contemporary concept about the structural and functional organization of the central nervous system (CNS) and the importance of developing the concept of the human connectome.Main concepts. Signifcant progress in understanding the organization of the CNS in normal and in various pathological conditions was achieved after the introduction of structural and functional neuroimaging methods frst into scientifc and then into clinical practice. Recently, when studying the neuropsychiatric sphere, special attention has been paid to neural networks. One of the achievements in this feld is the construction of the human connectome – a system of structural and functional connections between various cerebral areas, the state of which is assessed using multimodal methods of functional neuroimaging. Thus, the development of brain sciences has reached a completely different level – the level of systemic psychoneurology, when the existing processes are analyzed comprehensively, with the involvement of specialists in various felds – neurology, psychiatry, neuroimaging, mathematics, etc. The human connectome is basically a biological system, therefore, although the analogy with artifcial intelligence can be traced, it does not take the frst place. The functioning of the human connectome is based on the principle of parallel, rather than sequential, information processing. Taking into account the inherent ability of the brain (at least, some of its areas) to generate spontaneous non-rhythmic oscillations, this leads to the implementation of the basic principle of the functioning of the CNS – minimizing energy consumption. In addition, the presence of spontaneous non-rhythmic oscillations (the principle of uncertainty) probably underlies the inherent human ability to intuitively think, develop new ideas. The state of the connectome in a rest is determined by past experience, the duration of external influences, and age. It affects the nature and severity of neuroplastic processes, as well as, in particular, the effectiveness of certain pharmacological drugs in a given individual. At the same time, the fnal result of neuroplastic changes may be of a different nature. It can be favorable for the body (the so-called adaptive plasticity), do not affect the body in any way, or even have a negative result (the so-called maladaptive neuroplasticity). In children, such maladaptive manifestations are less pronounced. Currently, hardware methods of influencing the connectome are being actively studied. For example, it was shown that the structure of the connectome in a rest state can change after transcranial magnetic stimulation. Further studies of this problem will open up new opportunities for studying the activity of such a complexly organized system as the brain – in normal and in various pathological conditions – and to develop more effective methods of neurorehabilitation.


1991 ◽  
Vol 331 (1261) ◽  
pp. 337-343 ◽  

In adult mammals, the severing of the optic nerve near the eye is followed by a loss of retinal ganglion cells (RGCs) and a failure of axons to regrow into the brain. Experimental manipulations of the nonneuronal environment of injured RGCs enhance neuronal survival and make possible a lengthy axonal regeneration that restores functional connections with the superior colliculus. These effects suggest that injured nerve cells in the mature central nervous system (CNS) are strongly influenced by interactions with components of their immediate environment as well as their targets. Under these conditions, injured CNS neurons can express capacities for growth and differentiation that resemble those of normally developing neurons. An understanding of this regeneration in the context of the cellular and molecular events that influence the interactions of axonal growth cones with their non-neuronal substrates and neuronal targets should help in the further elucidation of the capacities of neuronal systems to recover from injury.


Author(s):  
Yong Chen ◽  
Yuyan Liu ◽  
Houjun Tian ◽  
Yixin Chen ◽  
Shuo Lin ◽  
...  

Abstract Insect neuropeptides in the pyrokinin/pheromone biosynthesis-activating neuropeptide (PBAN) family are actively involved in many essential endocrinal functions and serve as potential targets in the search for novel insect control agents. Here, we dissect the nervous system of larval, pupal, and adult Plutella xylostella (L.) (Lepidoptera: Plutellidae) and describe the ganglion morphology and localization of PBAN during different insect developmental stages. Our results show that the central nervous system (CNS) of this species consists of four types of ganglia: cerebral ganglia (brain), subesophageal ganglion (SEG), thoracic ganglia, and abdominal ganglia. A two-lobed brain is connected to the reniform SEG with a nerve cord in larvae and prepupae, whereas in the late pupae and adults, the brain and SEG are fused, forming a brain–SEG complex. The larvae and prepupae have eight abdominal ganglia each, whereas the late pupae and adults each have four abdominal ganglia. Furthermore, all life stages of P. xylostella had similar patterns of PBAN immunoreactivity in the CNS, and the accumulation of PBAN was similar during all life stages except in adult males. PBAN immunoreactive signals were observed in the brain and SEG, and fluorescence signals originating in the SEG extended the entire length of the ventral nerve cord, ending in the terminal abdominal ganglia. Our results provide morphological data that inform the development and evolution of the CNS. In addition, they indicate that the nervous system contains PBAN, which could be used to control P. xylostella populations.


Author(s):  
S.S. Spicer ◽  
B.A. Schulte

Generation of monoclonal antibodies (MAbs) against tissue antigens has yielded several (VC1.1, HNK- 1, L2, 4F4 and anti-leu 7) which recognize the unique sugar epitope, glucuronyl 3-sulfate (Glc A3- SO4). In the central nervous system, these MAbs have demonstrated Glc A3-SO4 at the surface of neurons in the cerebral cortex, the cerebellum, the retina and other widespread regions of the brain.Here we describe the distribution of Glc A3-SO4 in the peripheral nervous system as determined by immunostaining with a MAb (VC 1.1) developed against antigen in the cat visual cortex. Outside the central nervous system, immunoreactivity was observed only in peripheral terminals of selected sensory nerves conducting transduction signals for touch, hearing, balance and taste. On the glassy membrane of the sinus hair in murine nasal skin, just deep to the ringwurt, VC 1.1 delineated an intensely stained, plaque-like area (Fig. 1). This previously unrecognized structure of the nasal vibrissae presumably serves as a tactile end organ and to our knowledge is not demonstrable by means other than its selective immunopositivity with VC1.1 and its appearance as a densely fibrillar area in H&E stained sections.


2012 ◽  
Vol 13 (2) ◽  
pp. 32-42 ◽  
Author(s):  
Yvette D. Hyter

Abstract Complex trauma resulting from chronic maltreatment and prenatal alcohol exposure can significantly affect child development and academic outcomes. Children with histories of maltreatment and those with prenatal alcohol exposure exhibit remarkably similar central nervous system impairments. In this article, I will review the effects of each on the brain and discuss clinical implications for these populations of children.


2018 ◽  
Vol 23 (1) ◽  
pp. 10-13
Author(s):  
James B. Talmage ◽  
Jay Blaisdell

Abstract Injuries that affect the central nervous system (CNS) can be catastrophic because they involve the brain or spinal cord, and determining the underlying clinical cause of impairment is essential in using the AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), in part because the AMA Guides addresses neurological impairment in several chapters. Unlike the musculoskeletal chapters, Chapter 13, The Central and Peripheral Nervous System, does not use grades, grade modifiers, and a net adjustment formula; rather the chapter uses an approach that is similar to that in prior editions of the AMA Guides. The following steps can be used to perform a CNS rating: 1) evaluate all four major categories of cerebral impairment, and choose the one that is most severe; 2) rate the single most severe cerebral impairment of the four major categories; 3) rate all other impairments that are due to neurogenic problems; and 4) combine the rating of the single most severe category of cerebral impairment with the ratings of all other impairments. Because some neurological dysfunctions are rated elsewhere in the AMA Guides, Sixth Edition, the evaluator may consult Table 13-1 to verify the appropriate chapter to use.


Sign in / Sign up

Export Citation Format

Share Document