Basalts of the North Fiji Basin: the generation of back arc basin magmas by mixing of depleted and enriched mantle sources

1990 ◽  
Vol 105 (1) ◽  
pp. 106-121 ◽  
Author(s):  
R. C. Price ◽  
L. E. Johnson ◽  
A. J. Crawford
1994 ◽  
Vol 40 (8) ◽  
pp. 690-697 ◽  
Author(s):  
Pascale Durand ◽  
Afeda Benyagoub ◽  
Daniel Prieur

Sulfur-oxidizing bacteria (n = 161) were enriched and isolated from samples of vent water, invertebrates, and chimney rocks collected at two deep-sea hydrothermal vents (2000 m) in back-arc basins from the southwestern Pacific: the North Fiji Basin and the Lau Basin. Several types of heterotrophic sulfur-oxidizing bacteria were repeatedly isolated. They oxidized thiosulfate either to sulfate (acid producing) or to polythionate (base producing). In most of the acid-producing cultures, thiosulfate was transitorily oxidized to polythionate. All of the bacteria were Gram negative, 37% were fermentative, and 88% were denitrifiers or nitrate reducers. Numerical taxonomy and analysis of the G+C content showed that they belong to several genera including Pseudomonas, Acinetobacter, and Vibrio.Key words: hydrothermal vent, culturable thiosulfate-oxidizing bacteria, numerical taxonomy.


The results of recent geochemical investigations of several island arc - marginal basin systems in the Scotia Sea area and in the western Pacific are outlined. Marginal basins in different stages of evolution are represented, from those in the initial stages of formation to those with an extensive and multiple history of back-arc spreading. Some are completely intraoceanic, others have developed at continental margins. Basalts erupted at back-arc spreading centres seem to be as geochemically varied as those from normal mid-ocean ridges, and record evidence for similar processes of partial melting, fractional crystallization and magma mixing in their genesis. They appear to have been derived from mantle sources with incompatible trace element characteristics ranging from ‘depleted’ to ‘enriched’, but with the ‘enriched’ mantle sources being sampled during the earlier stages of back-arc spreading. Submarine back-arc basalts are more vesicular than their normal ocean ridge equivalents, and their corresponding glasses have higher water contents. This, together with other geochemical features such as the higher ratios of lithophile to high field strength elements in some back-arc basalts, suggests that a component from the subducted slab may be involved in their petrogenesis. The chemistry of the corresponding arc volcanics is described in relation to the subduction and extensions history of marginal basin development. In intraoceanic arcs the early stages of arc magmatism are dominated by the eruption of large volumes of island arc tholeiites and subsidiary high-Mg andesites. In the Mariana region, after the initial volcanic arc is split and separated by back-arc spreading, the later frontal arc volcanics have calc-alkaline characteristics. Basalts erupted during the early stages of back-arc spreading more commonly have arc-like geochemical features when the marginal basin has developed through splitting of a calc-alkaline volcanic arc. The secular variation in the geochemistry of the arc volcanics may be related to the progressive development of a lithophile element enriched mantle source beneath the arc. This source contributes to the basalts produced during the early stages of arc rifting and back-arc spreading. Ophiolite complexes which represent marginal basin floor may well carry these arc-like geochemical features.


1997 ◽  
Vol 34 (4) ◽  
pp. 489-503 ◽  
Author(s):  
Steven B. Shirey

Picrites and tholeiites from the Mamainse Point Formation, a 5.3 km thick section of Keweenawan (1100 Ma) volcanic and sedimentary fill on the eastern flank of the central portion of the Midcontinent rift system, contain a nearly continuous record of rift magmatic activity. Picrites occur primarily in the lowermost two units of the formation. In this study, they are compared to rarely exposed, slightly older Keweenawan basalts from the North Shore Volcanic Group and the Powder Mill Group to constrain mantle source compositions during early phases of rift magmatic activity. The most primitive picrites analyzed have low Re content (0.069–0.18 ppb), high Os content (0.8–2.1 ppb), and low 187Re/188Os (0.28–1.18). A Re–Os isochron with an age of 1128 ± 54 Ma and an initial 187Os/188Os of 0.1267 ± 0.0013 (γOs = +5.7) was obtained from a 24-point isochron on all but two analyzed samples. The Re–Os data, regressed separately for the older basalts, and the groups 1 and 2 samples from the Mamainse Point Formation, have barely resolvable initial 187Os/188Os that decrease up-stratigraphy from initial γOs(1100) of +12.2 to +6.2 and +4.2, respectively, and couple with changes in initial Nd isotopic composition. These data can be explained by mixing of melts of an enriched mantle plume and unradiogenic continental lithospheric mantle. A radiogenic initial Os isotopic composition (γOs of +8 or higher) for the Keweenawan plume marks the first known appearance of demonstrably radiogenic plume-derived magmas on Earth. Plume-derived magmas with radiogenic Os signatures are more common later. The radiogenic Os signatures of Keweenawan plume magmas may mark the appearance of melts derived from mantle containing recycled slab components from late Archean subduction.


1989 ◽  
Vol 170 (3-4) ◽  
pp. 259-277 ◽  
Author(s):  
Philippe Charvis ◽  
Bernard Pelletier

Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 790
Author(s):  
Feixiang Wei ◽  
Bo Pan ◽  
Jiandong Xu

The geochemistry on Holocene lavas from the Jingpohu volcanic field in NE China are compared with other Cenozoic lavas from across the back-arc rift of NE China, in order to constrain their enriched mantle sources. Holocene lavas within Jingpohu volcanic field comprise two separate “Crater Forest” (CF) and “Frog Pool” (FP) volcanic areas. FP lavas have lower MgO, CaO, and heavy rare earth elements and higher Al2O3, Na2O, K2O, and large-ion lithophile elements than CF lavas. Yet, both CF and FP lavas share similar isotopic signatures, with depleted Sr and Nd isotopes (87Sr/86Sr = 0.703915–0.704556, 143Nd/144Nd = 0.512656–0.512849) and unradiogenic Pb isotopes (208Pb/204Pb = 37.79–38.06, 207Pb/204Pb = 15.45–15.54, 206Pb/204Pb = 17.49–18.15), similar to oceanic island basalts. An important new constraint for the Jingpohu lavas lies in their Ca isotopes of δ44/40Ca from 0.63 to 0.77‰, which are lower than that of the bulk silicate earth (0.94 ± 0.05‰). By comparing the isotopic signatures of sodic lavas with that of the potassic lavas across NE China, we propose a three-component mixing model as the source for the sodic lavas. In consistence with geophysical results, we propose that subducting Pacific plate induces asthenospheric mantle upwelling of an upper depleted mantle (DM), including subducted ancient sediments (EM I), which partially melted upon ascent. These primary melts further interacted with the lithospheric mantle (EM II), before differentiating within crustal magma chambers and erupting.


Minerals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 25
Author(s):  
Shuang-Shuang Chen ◽  
Tong Hou ◽  
Jia-Qi Liu ◽  
Zhao-Chong Zhang

Shikoku Basin is unique as being located within a trench-ridge-trench triple junction. Here, we report mineral compositions, major, trace-element, and Sr-Nd-Pb isotopic compositions of bulk-rocks from Sites C0012 (>18.9 Ma) and 1173 (13–15 Ma) of the Shikoku Basin. Samples from Sites C0012 and 1173 are tholeiitic in composition and display relative depletion in light rare earth elements (REEs) and enrichment in heavy REEs, generally similar to normal mid-ocean ridge basalts (N-MORB). Specifically, Site C0012 samples display more pronounced positive anomalies in Rb, Ba, K, Pb and Sr, and negative anomalies in Th, U, Nb, and Ta, as well as negative Nb relative to La and Th. Site 1173 basalts have relatively uniform Sr-Nd-Pb isotopic compositions, close to the end member of depleted mantle, while Site C0012 samples show slightly enriched Sr-Nd-Pb isotopic signature, indicating a possible involvement of enriched mantle 1 (EM1) and EM2 sources, which could be attributed to the metasomatism of the fluids released from the dehydrated subduction slab, but with the little involvement of subducted slab-derived sedimentary component. Additionally, the Shikoku Basin record the formation of the back-arc basin was a mantle conversion process from an island arc to a typical MORB. The formation of the Shikoku Basin is different from that of the adjacent Japan Sea and Parece Vela Basin, mainly in terms of the metasomatized subduction-related components, the nature of mantle source, and partial melting processes.


2003 ◽  
Vol 40 (6) ◽  
pp. 833-852 ◽  
Author(s):  
M Tardy ◽  
H Lapierre ◽  
D Bosch ◽  
A Cadoux ◽  
A Narros ◽  
...  

The Slide Mountain Terrane consists of Devonian to Permian siliceous and detrital sediments in which are interbedded basalts and dolerites. Locally, ultramafic cumulates intrude these sediments. The Slide Mountain Terrane is considered to represent a back-arc basin related to the Quesnellia Paleozoic arc-terrane. However, the Slide Mountain mafic volcanic rocks exposed in central British Colombia do not exhibit features of back-arc basin basalts (BABB) but those of mid-oceanic ridge (MORB) and oceanic island (OIB) basalts. The N-MORB-type volcanic rocks are characterized by light rare-earth element (LREE)-depleted patterns, La/Nb ratios ranging between 1 and 2. Moreover, their Nd and Pb isotopic compositions suggest that they derived from a depleted mantle source. The within-plate basalts differ from those of MORB affinity by LREE-enriched patterns; higher TiO2, Nb, Ta, and Th abundances; lower εNd values; and correlatively higher isotopic Pb ratios. The Nd and Pb isotopic compositions of the ultramafic cumulates are similar to those of MORB-type volcanic rocks. The correlations between εNd and incompatible elements suggest that part of the Slide Mountain volcanic rocks derive from the mixing of two mantle sources: a depleted N-MORB type and an enriched OIB type. This indicates that some volcanic rocks of the Slide Mountain basin likely developed from a ridge-centered or near-ridge hotspot. The activity of this hotspot is probably related to the worldwide important mantle plume activity that occurred at the end of Permian times, notably in Siberia.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 711
Author(s):  
Irina Nedosekova ◽  
Nikolay Vladykin ◽  
Oksana Udoratina ◽  
Boris Belyatsky

The Ilmeno–Vishnevogorsk (IVC), Buldym, and Chetlassky carbonatite complexes are localized in the folded regions of the Urals and Timan. These complexes differ in geochemical signatures and ore specialization: Nb-deposits of pyrochlore carbonatites are associated with the IVC, while Nb–REE-deposits with the Buldym complex and REE-deposits of bastnäsite carbonatites with the Chetlassky complex. A comparative study of these carbonatite complexes has been conducted in order to establish the reasons for their ore specialization and their sources. The IVC is characterized by low 87Sr/86Sri (0.70336–0.70399) and εNd (+2 to +6), suggesting a single moderately depleted mantle source for rocks and pyrochlore mineralization. The Buldym complex has a higher 87Sr/86Sri (0.70440–0.70513) with negative εNd (−0.2 to −3), which corresponds to enriched mantle source EMI-type. The REE carbonatites of the Chetlassky сomplex show low 87Sr/86Sri (0.70336–0.70369) and a high εNd (+5–+6), which is close to the DM mantle source with ~5% marine sedimentary component. Based on Sr–Nd isotope signatures, major, and trace element data, we assume that the different ore specialization of Urals and Timan carbonatites may be caused not only by crustal evolution of alkaline-carbonatite magmas, but also by the heterogeneity of their mantle sources associated with different degrees of enrichment in recycled components.


Sign in / Sign up

Export Citation Format

Share Document