Elasto-plastic analysis for cyclic loading and tresca yield condition

1990 ◽  
Vol 6 (5-6) ◽  
pp. 407-422 ◽  
Author(s):  
M. A. M. Torkamani
1989 ◽  
Vol 111 (1) ◽  
pp. 39-46 ◽  
Author(s):  
G. N. Brooks ◽  
C.-P. Leung

An elastic-plastic analysis of a spherical shell loaded radially through a rigid inclusion is performed. The sphere is modeled as a shallow shell of infinite extent. The Tresca yield condition is used to derive the elastic-plastic moment-curvature relationship in a simple form. This is used to develop a computationally efficient solution method.


1967 ◽  
Vol 34 (1) ◽  
pp. 37-42 ◽  
Author(s):  
Andre Biron ◽  
Antoni Sawczuk

Using the strain-mapping method for the Tresca yield condition, the yield surface is derived for a cylindrical shell with a wall reinforced by longitudinal ribs on one side. Results are given for the case where the axial load is zero. As a sample problem utilizing this surface and as an appropriate method for solving nonlinear equations, the solution of a cantilever shell under constant pressure is obtained.


1980 ◽  
Vol 24 (01) ◽  
pp. 24-30
Author(s):  
S. Anantha Ramu ◽  
K. J. Iyengar

The determination of the inelastic response of cylindrical shells under general impulsive loads is of relevance to marine structures such as submarines, in analyzing their slamming damages. The present study is concerned with the plastic response of a simply supported cylindrical shell under a general axisymmetric impulsive load. The impulsive load is assumed to impart an axisymmetric velocity to the shell, with a Gaussian distribution along the longitudinal axis of the shell. A simplified Tresca yield condition is used. The shell response is determined for various forms of impulses ranging from a concentrated impulse to a uniform impulse over the entire length of the shell. Conclusions about the influence of geometry of the shell and the spatial distribution of impulse on the plastic behavior of cylindrical shells are presented.


1971 ◽  
Vol 93 (4) ◽  
pp. 998-1006
Author(s):  
H. S. Ho ◽  
D. P. Updike

Equations describing the stress field and velocity field occurring in a circular cylindrical shell at plastic collapse are derived corresponding to stress states lying on each face of a yield surface for a uniform shell of material obeying the Tresca yield condition. They are then applied to the case of a shell under combined axisymmetric loadings (moment, shear force, and axial force) at one end and uniform internal or external pressure on the lateral surface. For a sufficiently long shell, complete solutions are obtained for a fixed far end, and for a certain range of values of axial force and pressure, they are obtained for a free far end. All the solutions are represented by either closed form or by quadratures. It is shown that in many cases the radial velocity field is proportional to the shear force.


1992 ◽  
Vol 114 (2) ◽  
pp. 222-228 ◽  
Author(s):  
W. Jiang

This paper is concerned with the elastic-plastic analysis of tubes subjected to variable loads. The yield condition for a material having residual stress and strain is first derived. Then by incremental method, the stresses and strains of the tube at any loading stage can be found. A closed-form solution is achieved as an example of tubes incurring ratchetting, and a general program is developed to make the theory applicable to complex loading situations.


1987 ◽  
Vol 54 (3) ◽  
pp. 597-603 ◽  
Author(s):  
G. N. Brooks

Plasticity in shells is often contained near the ends of a segment where the bending stresses are significant. Outside of this local neighborhood the behavior is elastic. Thus, an axisymmetric shell can be divided along its axis into a purely elastic region away from an end and the local region where plasticity is present. The moment-curvature relation in the elastic-plastic region is calculated using the Tresca yield condition. Use of the Tresca yield condition greatly simplifies this derivation because the principal directions are known. This moment-curvature relationship is “exact” in the sense that only the standard assumptions of thin shell theory are made. The solutions of the elastic and plastic regions are matched at their intersection for an efficient numerical solution. The technique is used here to study the semi-infinite clamped cylindrical shell with an internal pressure loading.


1973 ◽  
Vol 2 (4) ◽  
pp. 216-222
Author(s):  
B. Slevinsky ◽  
J. B. Haddow

A numerical method for the analysis of the isothermal elastic-plastic expansion, by internal pressure, of cylindrical tubes with various end conditions is presented. The Tresca yield condition and associated plastic flow rule are assumed and both non-hardening and work-hardening tubes are considered with account being taken of finite plastic deformation. Tubes which undergo further plastic deformation on unloading are also considered. Expansion of a cylindrical cavity from zero radius in an infinite medium is considered as a limiting case.


1988 ◽  
Vol 32 (03) ◽  
pp. 168-176
Author(s):  
John Anastasiadis ◽  
Paul C. Xirouchakis

This paper presents the exact formulation and solution for the static flexural response of a rigid perfectly plastic freely floating plate subjected to lateral axisymmetric loading. The Tresca yield condition is adopted with the associated flow rule. The plate response is divided into three phases: Initially the plate moves downward into the foundation as a rigid body (Phase I). Subsequently the plate deforms in a conical mode in addition to the rigid body motion (Phase II). At a certain value of the load a hinge-circle forms which may move as the pressure increases further (Phase III). The nature of the solution during the third phase depends upon the parameter α = a/R (ratio of radius of loaded area to the plate radius). When α = αs≅ 0.46 the hinge-circle remains stationary under increasing load. For α < αs the hinge-circle shrinks, whereas for α > αs the hinge-circle expands with increasing pressure. The application of the present results to the problem of laterally loaded floating ice plates is discussed.


1969 ◽  
Vol 11 (4) ◽  
pp. 384-391 ◽  
Author(s):  
H. Odenö

A thin circular disc of elastic-perfectly plastic material, subjected to an axially symmetric transient temperature distribution, is treated analytically. All material parameters are assumed to be independent of the temperature. Poisson's ratio is taken to be one-half. The Tresca yield condition with associated flow rule is employed. The temperature distribution is that which appears when the outer rim surface of the disc receives a rapid temperature increase and it is solved approximately by the collocation method. The analysis shows that under certain circumstances, plastic deformation will occur in a moving annular region. This region starts to develop at the exterior surface and moves inward, while changing its width. After a certain finite time its width shrinks to zero. Except for a residual constant state of strain, the strain field is then again elastic. An application to the method of separating the ring and the shaft in a shrink-fit is carried out numerically. The residual stresses in the ring are calculated.


Sign in / Sign up

Export Citation Format

Share Document