Limit Analysis for Combined Edge and Pressure Loading on a Cylindrical Shell

1971 ◽  
Vol 93 (4) ◽  
pp. 998-1006
Author(s):  
H. S. Ho ◽  
D. P. Updike

Equations describing the stress field and velocity field occurring in a circular cylindrical shell at plastic collapse are derived corresponding to stress states lying on each face of a yield surface for a uniform shell of material obeying the Tresca yield condition. They are then applied to the case of a shell under combined axisymmetric loadings (moment, shear force, and axial force) at one end and uniform internal or external pressure on the lateral surface. For a sufficiently long shell, complete solutions are obtained for a fixed far end, and for a certain range of values of axial force and pressure, they are obtained for a free far end. All the solutions are represented by either closed form or by quadratures. It is shown that in many cases the radial velocity field is proportional to the shear force.

Author(s):  
Igor Orynyak ◽  
Andrii Oryniak

There is the general feeling among the scientists that everything what could be performed by theoretical analysis for cylindrical shell was already done in last century, or at least, would require so tremendous efforts, that it will have a little practical significance in our era of domination of powerful and simple to use commercial software. Present authors partly support this point of view. Nevertheless there is one significant mission of theory which is not exhausted yet, but conversely is increasingly required for engineering community. We mean the educational one, which would provide by rather simple means the general understanding of the patterns of deformational behavior, the load transmission mechanisms, and the dimensionless combinations of physical and geometrical parameters which governs these patterns. From practical consideration it is important for avoiding of unnecessary duplicate calculations, for reasonable restriction of the geometrical computer model for long structures, for choosing the correct boundary conditions, for quick evaluation of the correctness of results obtained. The main idea of work is expansion of solution in Fourier series in circumferential direction and subsequent consideration of two simplified differential equations of 4th order (biquadratic ones) instead of one equation of 8th order. The first equation is derived in assumption that all variables change more quickly in axial direction than in circumferential one (short solution), and the second solution is based on the opposite assumption (long solution). One of the most novelties of the work consists in modification of long solution which in fact is well known Vlasov’s semi-membrane theory. Two principal distinctions are suggested: a) hypothesis of inextensibility in circumferential direction is applied only after the elimination of axial force; b) instead of hypothesis zero shear deformation the differential dependence between circumferential displacement and axial one is obtained from equilibrium equation of circumferential forces by neglecting the forth order derivative. The axial force is transmitted to shell by means of short solution which gives rise (as main variables in it) to a radial displacement, its angle of rotation, bending radial moment and radial force. The shear force is also generated by it. The latter one is equilibrated by long solution, which operates by circumferential displacement, axial one, axial force and shear force. The comparison of simplified approach consisted from short solution and enhanced Vlasov’s (long) solution with FEA results for a variety of radius to wall thickness ratio from big values and up to 20 shows a good accuracy of this approach. So, this rather simple approach can be used for solution of different problems for cylindrical shells.


1990 ◽  
Vol 112 (3) ◽  
pp. 296-302 ◽  
Author(s):  
C.-P. Leung ◽  
G. N. Brooks

This study investigates the elastic-plastic behavior of a shallow spherical shell loaded radially through a flexible cylindrical nozzle. Both the sphere and the cylinder can yield and exhibit plastic deformation. The Tresca yield condition is employed to derive elastic-plastic moment-curvature relationship in a simple form which is implemented in an efficient solution scheme. Three geometric parameters represent the relative dimensions of the structure. Numerical results are obtained for a range of values of these parameters. Various situations involving the failure of the sphere and/or the cylinder are studied. The ultimate or failure loads of the structure are plotted as functions of the geometric parameters.


Author(s):  
Qing-Hai Du ◽  
Wei-Cheng Cui ◽  
Zheng-Quan Wan

The toroidal shell is a special type of shells of revolution, which is hardly solved by analytical method. To show the nonlinear structural characteristics of a circular toroidal shell with ring-stiffened ribs due to external pressure, both material nonlinear and geometric nonlinear Finite Element Analyses (FEA) have been presented in this paper, especially for the stability to the type of pressure hull. In the presented Finite Element Method (FEM), the elastic-plastic stress-strain relations have been adopted, and the initial deflection of toroidal shell created by manufacture was also taken into account. The analytic results eventually indicate that by nonlinear FEA such a new type of ring-stiffened circular toroidal shell could be used to a main pressure hull as the traditional ring-stiffened circular cylindrical shell, which could obtain kinds of performance in underwater engineering, such as better stability and more reserve buoyancy to the classical ring-stiffened cylindrical shell.


1977 ◽  
Vol 12 (1) ◽  
pp. 53-61 ◽  
Author(s):  
J Pattabiraman ◽  
V Ramamurti

The problem of stress concentration around cutouts in shells is an important one in the design of nuclear pressure vessels, boilers, pressure hulls of submarines, aircraft structures, pipe connections and tube and ball mills used in chemical industries. By using the finite-difference scheme suggested by Budiansky, the solution to the problem of a cylindrical shell without a cutout, subjected to an asymmetric load, is derived first. Then, the negatives of the stress resultants and stress couples at a given radius obtained from the above solution are combined with a transverse shear force to form the edge conditions for a circular cylindrical shell containing a circular cutout of radius a. The desired results are finally obtained by superposing these two solutions.


1962 ◽  
Vol 29 (2) ◽  
pp. 375-380 ◽  
Author(s):  
P. G. Hodge ◽  
Joseph Panarelli

A circular cylindrical shell is subjected to uniform internal or external pressure and a constant axial tensile or compressive stress. The interaction curve constituting load combinations which just cause plastic flow of a rigid/perfectly plastic material depends upon the assumed yield criterion of the shell material. Close bounds on the interaction curve are found when the material yields according to either the Tresca or Mises criterion.


1974 ◽  
Vol 18 (02) ◽  
pp. 139-139
Author(s):  
H. Becker

Pappas and Allentuch in the title paper computerized the investigation of a minimum-weight, ring-stiffened, elastic circular cylindrical shell under external pressure and obtained results similar to those found by Gerard in closed form in 1961.


1991 ◽  
Vol 113 (1) ◽  
pp. 41-45 ◽  
Author(s):  
N. Miyazaki ◽  
S. Hagihara ◽  
T. Munakata

Creep buckling analyses under stepwise varying loads are performed on a circular cylindrical shell with initial imperfection subjected to axial compression and a partial spherical shell under uniform external pressure. The finite element method is applied to a creep deformation analysis to obtain the critical time when creep buckling occurs. The results show that a linear cumulative damage rule for creep buckling can be well applied to the creep buckling of the circular cylindrical shell, but cannot to that of the partial spherical shell.


Sign in / Sign up

Export Citation Format

Share Document