Extracellular glucose-producing exodextranase of the yeast Lipomyces lipofer

1983 ◽  
Vol 49 (2) ◽  
pp. 183-190 ◽  
Author(s):  
A. Ramos ◽  
I. Spencer-Martins

2014 ◽  
Vol 307 (4) ◽  
pp. H587-H597 ◽  
Author(s):  
Mark W. Sims ◽  
James Winter ◽  
Sean Brennan ◽  
Robert I. Norman ◽  
G. André Ng ◽  
...  

While it is well established that mortality risk after myocardial infarction (MI) increases in proportion to blood glucose concentration at the time of admission, it is unclear whether there is a direct, causal relationship. We investigated potential mechanisms by which increased blood glucose may exert cardiotoxicity. Using a Wistar rat or guinea-pig isolated cardiomyocyte model, we investigated the effects on cardiomyocyte function and electrical stability of alterations in extracellular glucose concentration. Contractile function studies using electric field stimulation (EFS), patch-clamp recording, and Ca2+ imaging were used to determine the effects of increased extracellular glucose concentration on cardiomyocyte function. Increasing glucose from 5 to 20 mM caused prolongation of the action potential and increased both basal Ca2+ and variability of the Ca2+ transient amplitude. Elevated extracellular glucose concentration also attenuated the protection afforded by ischemic preconditioning (IPC), as assessed using a simulated ischemia and reperfusion model. Inhibition of PKCα and β, using Gö6976 or specific inhibitor peptides, attenuated the detrimental effects of glucose and restored the cardioprotected phenotype to IPC cells. Increased glucose concentration did not attenuate the cardioprotective role of PKCε, but rather activation of PKCα and β masked its beneficial effect. Elevated extracellular glucose concentration exerts acute cardiotoxicity mediated via PKCα and β. Inhibition of these PKC isoenzymes abolishes the cardiotoxic effects and restores IPC-mediated cardioprotection. These data support a direct link between hyperglycemia and adverse outcome after MI. Cardiac-specific PKCα and β inhibition may be of clinical benefit in this setting.





2009 ◽  
Vol 296 (5) ◽  
pp. E1101-E1109 ◽  
Author(s):  
Victoria E. Cotero ◽  
Vanessa H. Routh

Insulin signaling is dysfunctional in obesity and diabetes. Moreover, central glucose-sensing mechanisms are impaired in these diseases. This is associated with abnormalities in hypothalamic glucose-sensing neurons. Glucose-sensing neurons reside in key areas of the brain involved in glucose and energy homeostasis, such as the ventromedial hypothalamus (VMH). Our results indicate that insulin opens the KATP channel on VMH GE neurons in 5, 2.5, and 0.1 mM glucose. Furthermore, insulin reduced the sensitivity of VMH GE neurons to a decrease in extracellular glucose level from 2.5 to 0.1 mM. This change in the glucose sensitivity in the presence of insulin was reversed by the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin (10 nM) but not by the mitogen-activated kinase (MAPK) inhibitor PD-98059 (PD; 50 μM). Finally, neither the AMPK inhibitor compound C nor the AMPK activator AICAR altered the activity of VMH GE neurons. These data suggest that insulin attenuates the ability of VMH GE neurons to sense decreased glucose via the PI3K signaling pathway. Furthermore, these data are consistent with the role of insulin as a satiety factor. That is, in the presence of insulin, glucose levels must decline further before GE neurons respond. Thus, the set point for detection of glucose deficit and initiation of compensatory mechanisms would be lowered.



1995 ◽  
Vol 268 (4) ◽  
pp. E712-E721 ◽  
Author(s):  
J. H. Youn ◽  
J. K. Kim ◽  
G. M. Steil

The effects of insulin on extracellular glucose distribution and cellular glucose transport activity were studied by simultaneously analyzing the plasma kinetics of L-[1-14C]glucose and 3-O-[3H]methylglucose after an intravenous injection during saline or insulin infusion (euglycemic glucose clamp) in conscious rats (n = 7 for each). The time profiles of plasma L-glucose were almost superimposable in the two protocols, and compartmental analysis showed that neither distribution volumes nor distribution rate constants were affected with insulin (P > 0.05 for all), suggesting that glucose distribution within the extracellular space was not influenced with insulin. In contrast, the time profile of plasma 3-O-methylglucose (3-MG) was markedly altered with insulin; the initial decrease was much faster during insulin infusion than during saline infusion, indicating stimulation of 3-MG transport into intracellular spaces with insulin. The 3-MG data were analyzed using a comprehensive model separately describing extracellular distribution and cellular transport of 3-MG by incorporating information on extracellular distribution kinetics obtained from L-glucose data. The combined L-glucose and 3-MG kinetic analysis precisely estimated insulin's effect in vivo to stimulate glucose transport into and out of intracellular spaces. We conclude that 1) insulin does not affect extracellular glucose distribution kinetics or volumes in conscious rats and 2) insulin's effects on cellular glucose transport in vivo can be assessed by simultaneous analysis of plasma L-glucose and 3-MG kinetics.



1992 ◽  
Vol 263 (1) ◽  
pp. E17-E22 ◽  
Author(s):  
H. Katz ◽  
M. Homan ◽  
P. Butler ◽  
R. Rizza

[3-3H]glucose is frequently used to measure glucose turnover in humans. If fructose 6-phosphate-fructose 1,6-diphosphate cycling (Fpc) is negligible in both liver and muscle, then [3-3H]- and [6-14C]glucose (corrected for Cori cycle activity) should provide equivalent measures of glucose turnover. In addition, if glycogenolysis is fully suppressed, then [14C]lactate specific activity should equal that of [6-14C]glucose from which it was derived, and oxidation of [6-14C]glucose, as measured by rate of generation of 14CO2, should equal total glucose oxidation (i.e., that derived from intra- and extracellular pools) as measured by indirect calorimetry. To address these questions, glucose turnover was measured simultaneously with [3-3H]- and [6-14C]glucose in the basal state and in presence of low (approximately 200 pM) and high (approximately 750 pM) insulin concentrations. Glucose turnover rates measured with [3-3H]- and [6-14C]glucose were equivalent at all insulin concentrations, indicating that Fpc had no detectable effect on measurement of glucose appearance. [14C]lactate specific activity was lower (P less than 0.01) than that of [6-14C]glucose in the basal state but not during either low- or high-dose insulin infusion, implying that all lactate was derived from extracellular glucose. On the other hand, glucose oxidation as measured by rate of generation of 14CO2 was lower (P less than 0.05) than glucose oxidation as measured by indirect calorimetry during both insulin infusions, implying either that suppression of glycogenolysis was not complete in all tissues or that one or both of these techniques do not accurately measure glucose oxidation.(ABSTRACT TRUNCATED AT 250 WORDS)



1974 ◽  
Vol 140 (3) ◽  
pp. 423-433 ◽  
Author(s):  
Carl J. Hedeskov ◽  
Kirsten Capito

1. Rates of insulin secretion, glucose utilization, lactate output, incorporation of glucose into glycogen, contents of glucose 6-phosphate, fructose 1,6-diphosphate and ATP, and maximally extractable enzyme activities of hexokinase, high-Km glucose-phosphorylating activity (`glucokinase'), glucose 6-phosphatase and unspecific acid phosphatase were measured in isolated pancreatic islets from fed and 48-h-starved mice. 2. In the fed state insulin secretion from isolated islets was increased five- to six-fold when the extracellular glucose concentration was raised from 2.5mm to 16.7mm; 5mm-caffeine potentiated this effect. The secretory response to glucose of islets from mice starved for 48h was diminished at all glucose concentrations from 2.5mm up to approx. 40mm. Very high glucose concentrations (60mm and above) restored the secretory response to that found in the fed state, suggesting that the Km value for the overall secretory process had been increased (approx. fourfold) by starvation. Addition of 5mm-caffeine to islets from starved mice also restored the insulin secretory response to 2.5–16.7mm-glucose to normal values. 3. Extractable hexokinase, `glucokinase', glucose 6-phosphatase and unspecific phosphatase activities were not changed by starvation. 4. Glucose utilization and glycolysis (measured as the rate of formation of 3H2O from [5-3H]glucose over a 2h period) was decreased in islets from starved mice at all glucose concentrations up to approx. 55mm. At still higher glucose concentrations up to approx. 100mm, there was no difference between the fed and starved state, suggesting that the Km value for the rate-limiting glucose phosphorylation had been increased (approx. twofold) by starvation. Preparation of islets omitting substrates (glucose, pyruvate, fumarate and glutamate) from the medium during collagenase treatment lowered the glucose utilization measured subsequently at 16.7mm-glucose by 38 and 30% in islets from fed and starved mice respectively. Also the 2h lactate output by the islets at 16.7mm extracellular glucose was diminished by starvation. Incorporation of glucose into glycogen was extremely low, but the rate of incorporation was more than doubled by starvation. 5. After incubation for 30min at 16.7mm-glucose the content of glucose 6-phosphate was unchanged by starvation, that of ATP was increased and the concentration of (fructose 1,6-diphosphate plus triose phosphates) was decreased. 6. Possible mechanisms behind the correlated impairment in insulin secretion and islet glucose metabolism during starvation are discussed.



2013 ◽  
Vol 142 (4) ◽  
pp. 425-436 ◽  
Author(s):  
Guillaume Calmettes ◽  
Scott A. John ◽  
James N. Weiss ◽  
Bernard Ribalet

In mammalian tumor cell lines, localization of hexokinase (HK) isoforms to the cytoplasm or mitochondria has been shown to control their anabolic (glycogen synthesis) and catabolic (glycolysis) activities. In this study, we examined whether HK isoform differences could explain the markedly different metabolic profiles between normal adult and neonatal cardiac tissue. We used a set of novel genetically encoded optical imaging tools to track, in real-time in isolated adult (ARVM) and neonatal (NRVM) rat ventricular myocytes, the subcellular distributions of HKI and HKII, and the functional consequences on glucose utilization. We show that HKII, the predominant isoform in ARVM, dynamically translocates from mitochondria and cytoplasm in response to removal of extracellular glucose or addition of iodoacetate (IAA). In contrast, HKI, the predominant isoform in NRVM, is only bound to mitochondria and is not displaced by the above interventions. In ARVM, overexpression of HKI, but not HKII, increased glycolytic activity. In neonatal rat ventricular myocytes (NVRM), knockdown of HKI, but not HKII, decreased glycolytic activity. In conclusion, differential interactions of HKI and HKII with mitochondria underlie the different metabolic profiles of ARVM and NRVM, accounting for the markedly increased glycolytic activity of NRVM.



Sign in / Sign up

Export Citation Format

Share Document