Use of Forest Ecosystem Classification systems in fire management

1996 ◽  
Vol 39 (1-3) ◽  
pp. 559-570 ◽  
Author(s):  
Douglas J. McRae
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Musa Musa

This research was conducted to determine the Effectiveness of Jakarta Siaga 112 Emergency Services in Fire Management by UPT. Disaster Data & Information Center of BPBD DKI Jakarta Province by paying attention to aspects contained in the Effectiveness of the Jakarta Siaga Emergency Service Program 112. The research method was carried out with a case study method with data collection techniques using interview methods and document review. Interviews were conducted on 10 (ten) key informants, document review focused on documents related to the Jakarta Emergency Alert Service 112 Effectiveness research in Fire Management. The results showed that the Effectiveness of Jakarta Siaga 112 Emergency Services in Fire Management by UPT. The Center for Disaster Data & Information BPBD DKI Jakarta Province Its effectiveness is still low, due to the Implementation of Emergency Services Jakarta Standby 112 in Fire Management implemented by UPT. Disaster Data & Information Center of BPBD DKI Jakarta Province in terms of the Target Group Understanding of the Program, the Achievement of the Program Objectives aspects, and the Program Follow-up aspects. It is recommended to continue to disseminate this Emergency Service to the public, it is necessary to increase the firm commitment of the Head of 8 SKPD related to fire management so that all units play a role in accordance with the Standard Operating Procedures (SOPs) for Fire Management and the evaluation and follow-up of program services that are held periodically 3 once a month.Keywords: Effectiveness, Emergency Services, Fire Handling


Fire ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 15 ◽  
Author(s):  
Lynda D. Prior ◽  
David M. J. S. Bowman

Developing standardised classification of post-fire responses is essential for globally consistent comparisons of woody vegetation communities. Existing classification systems are based on responses of species growing in fire-prone environments. To accommodate species that occur in rarely burnt environments, we have suggested some important points of clarification to earlier schemes categorizing post-fire responses. We have illustrated this approach using several Australasian conifer species as examples of pyrophobic species. In particular, we suggest using the term “obligate seeder” for the general category of plants that rely on seed to reproduce, and qualifying this to “post-fire obligate seeder” for the narrower category of species with populations that recover from canopy fire only by seeding; the species are typically fire-cued, with large aerial or soil seed banks that germinate profusely following a fire, and grow and reproduce rapidly in order to renew the seed bank before the next fire.


2011 ◽  
Vol 20 (8) ◽  
pp. 909 ◽  
Author(s):  
T. D. Penman ◽  
O. Price ◽  
R. A. Bradstock

Wildfire can result in significant economic costs with inquiries following such events often recommending an increase in management effort to reduce the risk of future losses. Currently, there are no objective frameworks in which to assess the relative merits of management actions or the synergistic way in which the various combinations may act. We examine the value of Bayes Nets as a method for assessing the risk reduction from fire management practices using a case study from a forested landscape. Specifically, we consider the relative reduction in wildfire risk from investing in prescribed burning, initial or rapid attack and suppression. The Bayes Net was developed using existing datasets, a process model and expert opinion. We compared the results of the models with the recorded fire data for an 11-year period from 1997 to 2000 with the model successfully duplicating these data. Initial attack and suppression effort had the greatest effect on the distribution of the fire sizes for a season. Bayes Nets provide a holistic model for considering the effect of multiple fire management methods on the risk of wildfires. The methods could be further advanced by including the costs of management and conducting a formal decision analysis.


2020 ◽  
Vol 144 (5-6) ◽  
pp. 279-288
Author(s):  
Abdullah E. Akay ◽  
Michael Wing ◽  
Halit Büyüksakalli ◽  
Salih Malkoçoglu

Effective forest fire fighting involves alerting firefighting teams immediately in the case of a fire so that teams can promptly arrive the fire scene. The most effective way for an early detection of forest fires is monitoring of forest lands from fire lookout towers. Especially in fire sensitive forest lands, towers should be systematically located in such a way that fire lookout personnel can monitor the largest amount of forest land as possible. In this study, the visibility capabilities of lookout towers located in Köyceğiz Forest Enterprise Directorate (FED)in the city of Muğla in Turkey were evaluated by using Geographical Information System (GIS) based visibility and suitability analysis. The results of visibility analysis indicated that 77.12% of forest land were visible from the current towers. To extend the proportion of visible forest lands, locations of additional lookout towers were evaluated using spatial visibility and suitability analysis in which the tower locations were examined by considering specific criteria (i.e. distance to roads, elevation, ground slope, topographic features). Suitability analysis results identified five new towers in addition to current towers in the study area. The results indicated that visible forest lands increased to 81.47% by locating new towers, and increase of almost 4.35%. In addition, over half of the forests became visible by at least two towers when including five towers suggested by suitability analysis. The GIS-based method developed in this study can assist fire managers to determine the optimal locations for fire lookout towers for effective fire management activities.


2001 ◽  
Vol 10 (4) ◽  
pp. 343 ◽  
Author(s):  
Patricia L. Andrews ◽  
LLoyd P. Queen

This paper was presented at the conference ‘Integrating spatial technologies and ecological principles for a new age in fire management’, Boise, Idaho, USA, June 1999 Fire modeling and information system technology play an important supporting role in fuel and fire management. Modeling is used to examine alternative fuel treatment options, project potential ecosystem changes, and assess risk to life and property. Models are also used to develop fire prescriptions, conduct prescribed fire operations, and predict fire behavior. Fire models and information systems have greatly influenced fuel assessment methods. As an example, we examine the evolution of technology used to put Rothermel’s fire spread model into application. A review of fire and fuel modeling terminology is given, and the relationship between fire models and fuel models is explained. We review current fire modeling work and the influence that it will have on fuel characterization. Finally, we discuss opportunities and challenges involved in the use of advanced computers, the Internet, Geographic Information Systems (GIS), and remote sensing in fire and fuel management.


2010 ◽  
Vol 19 (1) ◽  
pp. iii ◽  
Author(s):  
Miguel G. Cruz ◽  
Martin E. Alexander ◽  
Ronald H. Wakimoto

Application of crown fire behavior models in fire management decision-making have been limited by the difficulty of quantitatively describing fuel complexes, specifically characteristics of the canopy fuel stratum. To estimate canopy fuel stratum characteristics of four broad fuel types found in the western United States and adjacent areas of Canada, namely Douglas-fir, ponderosa pine, mixed conifer, and lodgepole pine forest stands, data from the USDA Forest Service's Forest Inventory and Analysis (FIA) database were analysed and linked with tree-level foliage dry weight equations. Models to predict canopy base height (CBH), canopy fuel load (CFL) and canopy bulk density (CBD) were developed through linear regression analysis and using common stand descriptors (e.g. stand density, basal area, stand height) as explanatory variables. The models developed were fuel type specific and coefficients of determination ranged from 0.90 to 0.95 for CFL, between 0.84 and 0.92 for CBD and from 0.64 to 0.88 for CBH. Although not formally evaluated, the models seem to give a reasonable characterization of the canopy fuel stratum for use in fire management applications.


2020 ◽  
Vol 29 (10) ◽  
pp. 857 ◽  
Author(s):  
Jesse D. Young ◽  
Alexander M. Evans ◽  
Jose M. Iniguez ◽  
Andrea Thode ◽  
Marc D. Meyer ◽  
...  

In 2009, new guidance for wildland fire management in the United States expanded the range of strategic options for managers working to reduce the threat of high-severity wildland fire, improve forest health and respond to a changing climate. Markedly, the new guidance provided greater flexibility to manage wildland fires to meet multiple resource objectives. We use Incident Status Summary reports to understand how wildland fire management strategies have differed across the western US in recent years and how management has changed since the 2009 Guidance for Implementation of Federal Wildland Fire Management Policy. When controlling for confounding variation, we found the 2009 Policy Guidance along with other concurrent advances in fire management motivated an estimated 27 to 73% increase in the number of fires managed with expanded strategic options, with only limited evidence of an increase in size or annual area burned. Fire weather captured a manager’s intent and allocation of fire management resources relative to burning conditions, where a manager’s desire and ability to suppress is either complemented by fire weather, at odds with fire weather, or put aside due to other priorities. We highlight opportunities to expand the use of strategic options in fire-adapted forests to improve fuel heterogeneity.


2018 ◽  
Vol 185 (1) ◽  
pp. 10-22 ◽  
Author(s):  
Ludivine Eloy ◽  
Bibiana A. Bilbao ◽  
Jayalaxshmi Mistry ◽  
Isabel B. Schmidt

1985 ◽  
Vol 15 (6) ◽  
pp. 1099-1108 ◽  
Author(s):  
T. J. Carleton ◽  
R. K. Jones ◽  
G. Pierpoint

Problems arise in the use of understory vegetation as an indicator of site condition in that impermanent factors such as microclimate, succession, and chance may play significant roles in determining local composition. Residual ordination analysis is a method which facilitates quantification of the sources of variation in understory vegetation over a landscape. Here it is applied to survey data, representing 250 stands upon which the forest ecosystem classification programme for the Clay Belt portion of northeastern Ontario is based, to test the premise that vegetation types will differentiate soil conditions for forestry purposes. Ordination of the data by detrended correspondence analysis yielded a bivariate scatterplot which, through visual appraisal, seemed readily interpretable in terms of site-related nutrient and moisture gradients. Formal exploration, using canonical redundancy analysis, yielded the following predictive model: understory vegetation (detrended correspondence analysis axes 1 and 2) = soils (67%) + canopy (8%) + succession (1%) + error (24%). Extraction of residual ordinations confirmed this general model and demonstrated that although canopy and successional influences are minor in the data, they are significant. Because the nonsite-related, predictable components account for only 9% of the variation at most, the premise of the existing forest ecosystem classification system is judged to be sound insofar as the data upon which it is based adequately describe the range of commercial stand conditions normally encountered. The results are discussed in relation to vegetation survey design and the performance of residual ordination analysis on a large data set is assessed.


Sign in / Sign up

Export Citation Format

Share Document