From fire suppression to fire management: Advances and resistances to changes in fire policy in the savannas of Brazil and Venezuela

2018 ◽  
Vol 185 (1) ◽  
pp. 10-22 ◽  
Author(s):  
Ludivine Eloy ◽  
Bibiana A. Bilbao ◽  
Jayalaxshmi Mistry ◽  
Isabel B. Schmidt
2001 ◽  
Vol 10 (4) ◽  
pp. 267 ◽  
Author(s):  
Susan G. Conard ◽  
Timothy Hartzell ◽  
Michael W. Hilbruner ◽  
G. Thomas Zimmerman

This paper was presented at the conference ‘Integrating spatial technologies and ecological principles for a new age in fire management’, Boise, Idaho, USA, June 1999 ‘The earth, born in fire, baptized by lightning since before life"s beginning, has been and is a fire planet.’ E.V. Komarek Attitudes and policies concerning wildland fire, fire use, and fire management have changed greatly since early European settlers arrived in North America. Active suppression of wildfires accelerated early in the 20th Century, and areas burned dropped dramatically. In recent years, burned areas and cost of fires have begun to increase, in part due to fuel buildups resulting from fire suppression. The importance of fire as an ecosystem process is also being increasingly recognized. These factors are leading to changes in Federal agency fire and fuels management policies, including increased emphasis on use of prescribed fire and other treatments to reduce fuel loads and fire hazard. Changing fire management strategies have highlighted the need for better information and improved risk analysis techniques for setting regional and national priorities, and for monitoring and evaluating the ecological, economic, and social effects and tradeoffs of fuel management treatments and wildfires. The US Department of Interior and USDA Forest Service began the Joint Fire Science Program in 1998 to provide a sound scientific basis for implementing and evaluating fuel management activities. Development of remote sensing and GIS tools will play a key role in enabling land managers to evaluate hazards, monitor changes, and reduce risks to the environment and the public from wildland fires.


2020 ◽  
Vol 29 (11) ◽  
pp. 974
Author(s):  
William Nikolakis ◽  
Emma Roberts ◽  
Ngaio Hotte ◽  
Russell Myers Ross

After generations of fire-suppression policy, Indigenous fire management (IFM) is being reactivated as one way to mitigate wildfire in fire-prone ecosystems. Research has documented that IFM also mitigates carbon emissions, improves livelihoods and enhances well-being among participants. This study documents the goals of the Yunesit’in and Xeni Gwet’in First Nations as they develop a fire management program in central British Columbia, Canada. Drawing on goal setting theory and interviews, a qualitative coding and cluster analysis identified three general goals from fire management: (1) strengthen cultural connection and well-being, (2) restore the health of the land and (3) respect traditional laws. Sub-goals included enhancing community member health and well-being, improving fire management practices to maintain ‘pyrodiversity’ and food security and re-empowering Indigenous laws and practices. This community-developed framework will guide program evaluation and brings insight to a theory of IFM.


2005 ◽  
Vol 156 (9) ◽  
pp. 331-337
Author(s):  
Marco Conedera ◽  
Patrick Roth ◽  
Gabriele Corti ◽  
Daniele Ryser

Fire-services are often unable to obtain a rapid overview of problems connected with wildfire fighting. In the last few decades the ideology for fire fighting has shifted from fire control(basically fire suppression) to fire management (including prevention,planning, and simulating). As a result, fire management is now included in landscape planning processes. The preliminary step in fire management is fire risk analysis, which takes into account fire hazard (probability and expected severity of a fire) and the outcome (total impact on the affected environment). In this contribution we present an approach for assessing fire risk on local levels in southern Switzerland.


2007 ◽  
Vol 55 (3) ◽  
pp. 261 ◽  
Author(s):  
Eric S. Menges

In this work, I have used life-history and demographic data to define fire return intervals for several types of Florida scrub, a xeric shrubland where fire is the dominant ecological disturbance but where fire suppression is a major issue. The datasets combine chronosequence and longitudinal approaches at community and population levels. Resprouting shrubs, which dominate most types of Florida scrub, recover rapidly after fires (although their limits under frequent fires are not well known) and also increasingly dominate long-unburned areas. These dominant shrubs can prosper over a range of fire return intervals. Obligate-seeding scrub plants, which often have persistent seed banks, can be eliminated by frequent fire but often decline with infrequent fire. Population viability analyses of habitat specialists offer more precision in suggesting ranges of appropriate fire return intervals. For two types of Florida scrub (rosemary scrub and oak–hickory scrub), plant-population viability analyses narrow the interval and suggest more frequent fires than do previous recommendations, at intervals of 15–30 and 5–12 years, respectively. Variation in fire regimes in time and space (pyrodiversity) is recommended as a bet-hedging fire-management strategy and to allow co-existence of species with disparate life histories.


2001 ◽  
Vol 31 (8) ◽  
pp. 1462-1466 ◽  
Author(s):  
K Miyanishi ◽  
E A Johnson

A report by Ward and Tithecott (P.C. Ward and A.G. Tithecott. 1993. Ontario Ministry of Natural Resources, Aviation, Flood and Fire Management Branch, Publ. 305.) is frequently cited in the literature as providing evidence of the effects of fire suppression on the boreal forest. The study is based on 15 years of fire data and stand age data from Ontario, Canada. A re-examination of this report reveals serious flaws that invalidate the conclusions regarding effects of fire suppression on fire size and fire frequency. The fire-size data from the unprotected zone are censored in the small size classes because of detection resolution, invalidating comparisons of shapes of the distributions between the protected and unprotected zones. Use of different plotting scales gives the false appearance of large differences in the number of large fires between the two zones. Stand age data are used to show a change in fire frequency in the 20th century, and this change is attributed to fire suppression. However, no evidence is presented to conclude that this change in fire frequency is attributable to fire suppression and not to climate change. The estimate of the current fire cycle is based on too short a record to give a reliable estimate given the variation in annual area burned. Therefore, this report does not present sound evidence of fire suppression effects and should not be cited as such.


2016 ◽  
Vol 371 (1696) ◽  
pp. 20150174 ◽  
Author(s):  
Jayalaxshmi Mistry ◽  
Bibiana A. Bilbao ◽  
Andrea Berardi

Fire plays an increasingly significant role in tropical forest and savanna ecosystems, contributing to greenhouse gas emissions and impacting on biodiversity. Emerging research shows the potential role of Indigenous land-use practices for controlling deforestation and reducing CO 2 emissions. Analysis of satellite imagery suggests that Indigenous lands have the lowest incidence of wildfires, significantly contributing to maintaining carbon stocks and enhancing biodiversity. Yet acknowledgement of Indigenous peoples' role in fire management and control is limited, and in many cases dismissed, especially in policy-making circles. In this paper, we review existing data on Indigenous fire management and impact, focusing on examples from tropical forest and savanna ecosystems in Venezuela, Brazil and Guyana. We highlight how the complexities of community owned solutions for fire management are being lost as well as undermined by continued efforts on fire suppression and firefighting, and emerging approaches to incorporate Indigenous fire management into market- and incentive-based mechanisms for climate change mitigation. Our aim is to build a case for supporting Indigenous fire practices within all scales of decision-making by strengthening Indigenous knowledge systems to ensure more effective and sustainable fire management. This article is part of the themed issue ‘The interaction of fire and mankind’.


2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Musa Musa

This research was conducted to determine the Effectiveness of Jakarta Siaga 112 Emergency Services in Fire Management by UPT. Disaster Data & Information Center of BPBD DKI Jakarta Province by paying attention to aspects contained in the Effectiveness of the Jakarta Siaga Emergency Service Program 112. The research method was carried out with a case study method with data collection techniques using interview methods and document review. Interviews were conducted on 10 (ten) key informants, document review focused on documents related to the Jakarta Emergency Alert Service 112 Effectiveness research in Fire Management. The results showed that the Effectiveness of Jakarta Siaga 112 Emergency Services in Fire Management by UPT. The Center for Disaster Data & Information BPBD DKI Jakarta Province Its effectiveness is still low, due to the Implementation of Emergency Services Jakarta Standby 112 in Fire Management implemented by UPT. Disaster Data & Information Center of BPBD DKI Jakarta Province in terms of the Target Group Understanding of the Program, the Achievement of the Program Objectives aspects, and the Program Follow-up aspects. It is recommended to continue to disseminate this Emergency Service to the public, it is necessary to increase the firm commitment of the Head of 8 SKPD related to fire management so that all units play a role in accordance with the Standard Operating Procedures (SOPs) for Fire Management and the evaluation and follow-up of program services that are held periodically 3 once a month.Keywords: Effectiveness, Emergency Services, Fire Handling


Drones ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 17
Author(s):  
Elena Ausonio ◽  
Patrizia Bagnerini ◽  
Marco Ghio

The recent huge technological development of unmanned aerial Vehicles (UAVs) can provide breakthrough means of fighting wildland fires. We propose an innovative forest firefighting system based on the use of a swarm of hundreds of UAVs able to generate a continuous flow of extinguishing liquid on the fire front, simulating the effect of rain. Automatic battery replacement and extinguishing liquid refill ensure the continuity of the action. We illustrate the validity of the approach in Mediterranean scrub first computing the critical water flow rate according to the main factors involved in the evolution of a fire, then estimating the number of linear meters of active fire front that can be extinguished depending on the number of drones available and the amount of extinguishing fluid carried. A fire propagation cellular automata model is also employed to study the evolution of the fire. Simulation results suggest that the proposed system can provide the flow of water required to fight low-intensity and limited extent fires or to support current forest firefighting techniques.


Author(s):  
Julien Ruffault ◽  
Thomas Curt ◽  
Nicolas K. Martin St-Paul ◽  
Vincent Moron ◽  
Ricardo M. Trigo

Abstract. Increasing drought conditions under global warming are expected to alter the frequency and distribution of large, high intensity wildfires. Yet, little is known regarding how it will affect fire weather and translate into wildfire behaviour. Here, we analysed the climatology of extreme wildfires that occurred during the exceptionally dry summers of 2003 and 2016 in Mediterranean France. We identified two distinct shifts in fire climatology towards fire weather spaces that had not been explored before, and which result from specific interactions between the types of drought and the types of fire. In 2016, a long-lasting press drought intensified wind-driven fires. In 2003, a hot drought combining a heatwave with a press drought intensified heat-driven fires. Our findings highlight that increasing drought conditions projected by climate change scenarios might affect the dryness of fuel compartments and create several new generations of wildfire overwhelming fire suppression capacities.


2011 ◽  
Vol 20 (8) ◽  
pp. 909 ◽  
Author(s):  
T. D. Penman ◽  
O. Price ◽  
R. A. Bradstock

Wildfire can result in significant economic costs with inquiries following such events often recommending an increase in management effort to reduce the risk of future losses. Currently, there are no objective frameworks in which to assess the relative merits of management actions or the synergistic way in which the various combinations may act. We examine the value of Bayes Nets as a method for assessing the risk reduction from fire management practices using a case study from a forested landscape. Specifically, we consider the relative reduction in wildfire risk from investing in prescribed burning, initial or rapid attack and suppression. The Bayes Net was developed using existing datasets, a process model and expert opinion. We compared the results of the models with the recorded fire data for an 11-year period from 1997 to 2000 with the model successfully duplicating these data. Initial attack and suppression effort had the greatest effect on the distribution of the fire sizes for a season. Bayes Nets provide a holistic model for considering the effect of multiple fire management methods on the risk of wildfires. The methods could be further advanced by including the costs of management and conducting a formal decision analysis.


Sign in / Sign up

Export Citation Format

Share Document