scholarly journals Endothelial relaxation is disturbed by oxidative stress in the diabetic rat heart: influence of tocopherol as antioxidant

Diabetologia ◽  
1995 ◽  
Vol 38 (10) ◽  
pp. 1157-1168 ◽  
Author(s):  
P. R�sen ◽  
T. Ballhausen ◽  
W. Bloch ◽  
K. Addicks
2014 ◽  
Vol 92 (10) ◽  
pp. 827-837 ◽  
Author(s):  
Varun Saran ◽  
Vijay Sharma ◽  
Richard Wambolt ◽  
Violet G. Yuen ◽  
Michael Allard ◽  
...  

Metabolic disturbances and oxidative stress have been highlighted as potential causative factors for the development of diabetic cardiomyopathy. The β-blocker metoprolol is known to improve function in the diabetic rat heart and ameliorates the sequelae associated with oxidative stress, without lowering oxidative stress. The antioxidant ascorbic acid is known to improve function in the diabetic rat heart. We tested whether a combination of ascorbic acid and metoprolol treatment would improve function further than each drug individually. Control and streptozotocin-induced diabetic Wistar rats were treated with metoprolol (15 mg·(kg body mass)−1·day−1, via an osmotic pump) and (or) ascorbic acid (1000 mg·(kg body mass)−1·day−1, via their drinking water). To study the effect of treatment on the development of dysfunction, we examined time points before (5 weeks diabetic) and after (7 weeks diabetic) development of overt systolic dysfunction. Echocardiography and working-heart-perfusion were used to assess cardiac function. Blood and tissue samples were collected to assess the severity of disease and oxidative stress. While both drugs improved function, only ascorbic acid had effects on oxidative damage. Combination treatment had a more pronounced improvement in function. Our β-blocker + antioxidant treatment strategy focused on oxidative stress, not diabetes specifically; therefore, it may prove useful in other diseases where oxidative stress contributes to the pathology.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 235 ◽  
Author(s):  
Pankaj Bagul ◽  
Parmeshwar Katare ◽  
Paramesha Bugga ◽  
Amit Dinda ◽  
Sanjay K. Banerjee

Background and Purpose: Mitochondrial dysfunction remains the crucial cause for many heart diseases including diabetic cardiomyopathy (DCM). Sirtuin-3 (SIRT-3) is a protein deacetylase localized in the mitochondria and regulates mitochondrial function. Being a noteworthy mitochondrial protein deacetylase enzyme, the role of SIRT-3 in DCM is yet to be explored. Experimental Approach: Diabetes mellitus (Type-I, T1DM) was induced using streptozotocin (STZ, 50 mg/kg) in male Sprague Dawley (SD) rats. Rats with >200 mg/dL blood glucose levels were then divided randomly into two groups, DIA and DIA + RESV, where vehicle and resveratrol (25 mg/kg/day) were administered orally in both groups, respectively. Cardiac oxidative stress, fibrosis, and mitochondrial parameters were evaluated. H9c2 cells were transfected with SIRT-3 siRNA and shRNA, and ORF plasmid for silencing and overexpression, respectively. Key Results: After eight weeks, diabetic rat heart showed reduced cardiac cell size, increased oxidative stress and reduction of the activities of enzymes involved in mitochondrial oxidative phosphorylation (OXPHOS). There was reduced expression and activity of SIRT-3 and mitochondrial transcription factor (TFAM) in diabetic heart. Reduced SIRT-3 expression is also correlated with increased acetylation, decreased mitochondrial DNA (mtDNA) binding activity of TFAM, and reduced transcription of mitochondrial DNA encoded genes. Administration of resveratrol prevented the decrease in SIRT-3 and TFAM activity, which was corresponding to the reduced acetylation status of TFAM. Silencing SIRT-3 using siRNA in H9C2 cells showed increased acetylation of TFAM. Conclusion and Implications: Together our data shows that resveratrol activates SIRT-3, regulates the acetylation status of TFAM and preserves the mitochondrial function along with cellular size in diabetic rat heart.


Diabetologia ◽  
1995 ◽  
Vol 38 (10) ◽  
pp. 1157-1168 ◽  
Author(s):  
P. R�sen ◽  
T. Ballhausen ◽  
W. Bloch ◽  
K. Addicks

2014 ◽  
Vol 9 (S 01) ◽  
Author(s):  
M Oelze ◽  
S Kröller-Schön ◽  
M Mader ◽  
E Zinßius ◽  
P Stamm ◽  
...  

2000 ◽  
Vol 2 ◽  
pp. 83-83
Author(s):  
T. Ravingerova ◽  
J. Neckar ◽  
F. Kolar ◽  
M. Barancik ◽  
M. Strniskova ◽  
...  

2003 ◽  
Vol 22 (6) ◽  
pp. 423-427 ◽  
Author(s):  
Mary Otsyula ◽  
Matthew S. King ◽  
Tonya G. Ketcham ◽  
Ruth A. Sanders ◽  
John B. Watkins

Two of the models used in current diabetes research include the hypergalactosemic rat and the hyperglucosemic, streptozotocin-induced diabetic rat. Few studies, however, have examined the concurrence of these two models regarding the effects of elevated hexoses on biomarkers of oxidative stress. This study compared the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase and the concentrations of glutathione, glutathione disulfide, and thiobarbituric acid reactants (as a measure of lipid peroxidation) in liver, kidney, and heart of Sprague-Dawley rats after 60 days of either a 50% galactose diet or insulin deficiency caused by streptozotocin injection. Most rats from both models developed bilateral cataracts. Blood glucose and glycosy-lated hemoglobin A1c concentrations were elevated in streptozotocin diabetic rats. Streptozotocin diabetic rats exhibited elevated activities of renal superoxide dismutase, cardiac catalase, and renal and cardiac glutathione peroxidase, as well as elevated hepatic lipid peroxidation. Insulin treatment of streptozotocin-induced diabetic rats normalized altered markers. In galactosemic rats, hepatic lipid peroxidation was increased whereas glutathione reductase activity was diminished. Glutathione levels in liver were decreased in diabetic rats but elevated in the galactosemic rats, whereas hepatic glutathione disulfide concentrations were decreased much more in diabetes than in galactosemia. Insulin treatment reversed/prevented all changes caused by streptozotocin-induced diabetes. Lack of concomitance in these data indicate that the 60-day galactose-fed rat is not experiencing the same oxidative stress as the streptozotocin diabetic rat, and that investigators must be cautious drawing conclusions regarding the concurrence of the effects of the two animal models on oxidative stress biomarkers.


Sign in / Sign up

Export Citation Format

Share Document