Pressure distribution at the knee joint

1993 ◽  
Vol 113 (1) ◽  
pp. 12-19 ◽  
Author(s):  
J. Bruns ◽  
M. Volkmer ◽  
S. Luessenhop
Author(s):  
Dong Sun ◽  
Feng Ling Li ◽  
Yan Zhang ◽  
Chang Feng Li ◽  
Wen Lan Lian ◽  
...  

The purpose of this current study was to measure the knee joint angle and plantar pressure distribution between hallux valgus group and normal group under jogging condition. To reveal relationship of plantar pressure distribution and knee joint angle. Investigated that lower extremity mechanics of jogging in young female with mild hallux valgus. Sixteen young, healthy females volunteered to take part in this study. Kinematic data from a three-dimensional motion analysis system and plantar pressure distribution from Pedar-X system were collected to describe lower extremity mechanics while hallux valgus subjects jogging at a natural speed. The results found that knee joint angle of hallux valgus in frontal and transverse plane was obviously different under jogging condition. In frontal plane, the initial state of adduction angle (control group (CO) = 1.73 °, hallux valgus group (HV) = 8.33 °) of two group was markedly different at the beginning of the support (0-10%). During jogging gait cycle, knee abduction angle peak of normal group was 8.46°, and knee adduction angle peak of hallux valgus group was 8.61°. In the transverse plane, knee external rotation angle in the initial state of normal group was 21.93° while knee external rotation angle of hallux valgus was 4.89°. The results of plantar pressure found that bearing pressure regions was offshore in hallux valgus group. These changes would affect the movement of knee joint, and it suggested that hallux valgus group have higher risk for knee osteoarthritis. These results also suggested that hallux valgus deformity has influence on knee joint. We cannot be ignored in the process of the research and therapeutic with hallux valgus.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Calvin T. F. Tse ◽  
Michael B. Ryan ◽  
Jason Dien ◽  
Alex Scott ◽  
Michael A. Hunt

Abstract Background Lateral wedge insoles (LWI), standalone or with medial arch support (supported-LWI), have been thoroughly investigated for their effects on modifying gait biomechanics for people with knee osteoarthritis. However, plantar pressure distribution between these insole types has not been investigated and could provide insight towards insole prescription with concomitant foot symptoms taken into consideration. Methods In a sample of healthy individuals (n = 40), in-shoe plantar pressure was measured during walking with LWI, with or without medial arch support (variable- and uniform-stiffness designs), and a flat control insole condition. Pressure data from the plantar surface of the foot were divided into seven regions: medial/lateral rearfoot, midfoot, medial/central/lateral forefoot, hallux. Plantar pressure outcomes assessed were the medial-lateral pressure index (MLPI) for the whole foot, and the peak pressure, pressure-time integral (PTI), and contact area in each plantar region. Comfort in each insole condition was rated as a change relative to the flat control insole condition. Repeated-measures analyses of variance were calculated to compare the plantar pressure outcomes between insole conditions. Results Regionally, medial rearfoot and forefoot pressure were reduced by all wedged insoles, with the variable-stiffness supported-wedge showing greater reductions than the standalone wedge. Lateral rearfoot and forefoot pressure were reduced by both supported-LWI, but unchanged by the standalone wedge. In the midfoot, the standalone wedge maintained pressure but reduced regional contact area, while both supported-LWI increased midfoot pressure and contact area. All LWI increased the MLPI, indicating a lateral shift in plantar pressure distribution throughout the weightbearing phase of gait. Comfort ratings were not significantly different between insole conditions. Conclusions Regional differences in plantar pressure may help determine an appropriate lateral wedge insole variation to avoid exacerbation of concomitant foot symptoms by minimizing pressure in symptomatic regions. Lateral shifts in plantar pressure distribution were observed in all laterally wedged conditions, including one supported-LWI that was previously shown to be biomechanically ineffective for modifying knee joint load distribution. Thus, shifts in foot centre of pressure may not be a primary mechanism by which LWI can modify knee joint load distribution for people with knee osteoarthritis.


1994 ◽  
Vol 113 (4) ◽  
pp. 204-209 ◽  
Author(s):  
J. Bruns ◽  
M. Volkmer ◽  
S. Luessenhop

2021 ◽  
Author(s):  
Calvin Tse ◽  
Michael Ryan ◽  
Jason Dien ◽  
Alex Scott ◽  
Michael Hunt

Abstract Background: Lateral wedge insoles (LWI), standalone or with medial arch support (supported-LWI), have been thoroughly investigated for their effects on modifying gait biomechanics for people with knee osteoarthritis. However, plantar pressure distribution between these insole types has not been investigated and could provide insight towards insole prescription with concomitant foot symptoms taken into consideration.Methods: In a sample of healthy individuals (n = 40), in-shoe plantar pressure was measured during walking with LWI, with or without medial arch support (variable- and uniform-stiffness designs), and a flat control insole condition. Pressure data from the plantar surface of the foot was divided into seven regions: medial/lateral rearfoot, midfoot, medial/central/lateral forefoot, hallux. Plantar pressure outcomes assessed were the medial-lateral pressure index (MLPI) for the whole foot, and the peak pressure, pressure-time integral (PTI), and contact area in each plantar region. Comfort in each insole condition was rated as a change relative to the flat control insole condition. Repeated-measures analyses of variance were calculated to compare the plantar pressure outcomes between insole conditions. Results: Regionally, medial rearfoot and forefoot pressure were reduced by all wedged insoles, with the variable-stiffness supported-wedge showing greater reductions than the standalone wedge. Lateral rearfoot and forefoot pressure were reduced by both supported-LWI, but unchanged by the standalone wedge. In the midfoot, the standalone wedge maintained pressure but reduced regional contact area, while both supported-LWI increased midfoot pressure and contact area. All LWI increased the MLPI, indicating a lateral shift in plantar pressure distribution throughout the weightbearing phase of gait. Comfort ratings were not significantly different between insole conditions. Conclusions: Regional differences in plantar pressure may help determine an appropriate lateral wedge insole variation to avoid exacerbation of concomitant foot symptoms by minimizing pressure in symptomatic regions. Lateral shifts in plantar pressure distribution were observed in all laterally wedged conditions, including one supported-LWI that was previously shown to be biomechanically ineffective for modifying knee joint load distribution. Thus, shifts in foot centre of pressure may not be a primary mechanism by which LWI can modify knee joint load distribution for people with knee osteoarthritis.


1987 ◽  
Vol 16 (1) ◽  
pp. 121-129
Author(s):  
M. Möttönen ◽  
M. Pantio ◽  
T. Nevalainen

2006 ◽  
Vol 45 (01) ◽  
pp. 57-61
Author(s):  
M. Puille ◽  
D. Steiner ◽  
R. Bauer ◽  
R. Klett

Summary Aim: Multiple procedures for the quantification of activity leakage in radiation synovectomy of the knee joint have been described in the literature. We compared these procedures considering the real conditions of dispersion and absorption using a corpse phantom. Methods: We simulated different distributions of the activity in the knee joint and a different extra-articular spread into the inguinal lymph nodes. The activity was measured with a gammacamera. Activity leakage was calculated by measuring the retention in the knee joint only using an anterior view, using the geometric mean of anterior and posterior views, or using the sum of anterior and posterior views. The same procedures were used to quantify the activity leakage by measuring the activity spread into the inguinal lymph nodes. In addition, the influence of scattered rays was evaluated. Results: For several procedures we found an excellent association with the real activity leakage, shown by an r² between 0.97 and 0.98. When the real value of the leakage is needed, e. g. in dosimetric studies, simultaneously measuring of knee activity and activity in the inguinal lymph nodes in anterior and posterior views and calculation of the geometric mean with exclusion of the scatter rays was found to be the procedure of choice. Conclusion: When measuring of activity leakage is used for dosimetric calculations, the above-described procedure should be used. When the real value of the leakage is not necessary, e. g. for comparing different therapeutic modalities, several of the procedures can be considered as being equivalent.


1993 ◽  
Vol 06 (02) ◽  
pp. 100-104 ◽  
Author(s):  
D. M. Pickles ◽  
C. R. Bellenger

SummaryTotal removal of a knee joint meniscus is followed by osteoarthritis in many mammalian species. Altered load-bearing has been observed in the human knee following meniscectomy but less is known about biochemical effects of meniscectomy in other species. Using pressure sensitive paper in sheep knee (stifle) joints it was found that, for comparable loads, the load-bearing area on the medial tibial condyle was significantly reduced following medial meniscectomy. Also, for loads of between 50 N and 500 N applied to the whole joint, the slope of the regression of contact area against load was much smaller. Following medial meniscectomy, the ability to increase contact area as load increased was markedly reduced.The load bearing area on the medial tibial condyle was reduced following meniscectomy.


Sign in / Sign up

Export Citation Format

Share Document