Effect of warm working on the precipitation of vanadium carbide in a medium carbon austenitic steel

1976 ◽  
Vol 11 (7) ◽  
pp. 1320-1329 ◽  
Author(s):  
S. J. Harris ◽  
N. R. Nag
Wear ◽  
2021 ◽  
pp. 203732
Author(s):  
Quanshun Luo ◽  
Jianbin Li ◽  
Qintai Yan ◽  
Wenbo Li ◽  
Yubi Gao ◽  
...  

2019 ◽  
Vol 8 (5) ◽  
pp. 20190021
Author(s):  
B. Aashranth ◽  
M. Arvinth Davinci ◽  
Dipti Samantaray ◽  
Utpal Borah

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 652
Author(s):  
Koh-ichi Sugimoto

This article introduces the microstructural and mechanical properties of low and medium-carbon advanced martensitic steels (AMSs) subjected to heat-treatment, hot- and warm- working, and/or case-hardening processes. The AMSs developed for sheet and wire rod products have a tensile strength higher than 1.5 GPa, good cold-formability, superior toughness and fatigue strength, and delayed fracture strength due to a mixture of martensite and retained austenite, compared with the conventional martensitic steels. In addition, the hot- and warm-stamping and forging contribute to enhance the mechanical properties of the AMSs due to grain refining and the improvement of retained austenite characteristics. The case-hardening process (fine particle peening and vacuum carburization) is effective to further increase the fatigue strength.


Author(s):  
G. M. Michal ◽  
T. K. Glasgow ◽  
T. J. Moore

Large additions of B to Fe-Ni alloys can lead to the formation of an amorphous structure, if the alloy is rapidly cooled from the liquid state to room temperature. Isothermal aging of such structures at elevated temperatures causes crystallization to occur. Commonly such crystallization pro ceeds by the nucleation and growth of spherulites which are spherical crystalline bodies of radiating crystal fibers. Spherulite features were found in the present study in a rapidly solidified alloy that was fully crysstalline as-cast. This alloy was part of a program to develop an austenitic steel for elevated temperature applications by strengthening it with TiB2. The alloy contained a relatively large percentage of B, not to induce an amorphous structure, but only as a consequence of trying to obtain a large volume fracture of TiB2 in the completely processed alloy. The observation of spherulitic features in this alloy is described herein. Utilization of the large range of useful magnifications obtainable in a modern TEM, when a suitably thinned foil is available, was a key element in this analysis.


Author(s):  
F. A. Khalid ◽  
D. V. Edmonds

The austenite/pearlite growth interface in a model alloy steel (Fe-1 lMn-0.8C nominal wt%) is being investigated. In this particular alloy pearlite nodules can be grown isothermally in austenite that remains stable at room temperature, thus facilitating examination of the transformation interfaces. This study presents preliminary results of thin foil TEM of the austenite/pearlite interface, as part of a programme of aimed at studying alloy carbide precipitation reactions at this interface which can result in significant strengthening of microalloyed low- and medium- carbon steels L Similar studies of interface structure, made on a partially decomposed high- Mn austenitic alloy, have been reported recently.The experimental alloys were made as 50 g argon arc melts using high purity materials and homogenised. Samples were hot- rolled, swaged and machined to 3mm diameter rod, solution treated at 1300 °C for 1 hr and WQ. Specimens were then solutionised between 1250 °C and 1000 °C and isothermally transformed between 610 °C and 550 °C for 10-18 hr and WQ.


Author(s):  
F. A. Khalid ◽  
D. V. Edmonds

The austenite/pearlite growth interface in a model alloy steel (Fe-1lMn-0.8C-0.5V nominal wt%) is being studied in an attempt to characterise the morphology and mechanism of VC precipitation at the growth interface. In this alloy pearlite nodules can be grown isothermally in austenite that remains stable at room temperature thus facilitating examination of the transformation interfaces. This study presents preliminary results of thin foil TEM of the precipitation of VC at the austenite/ferrite interface, which reaction, termed interphase precipitation, occurs in a number of low- carbon HSLA and microalloyed medium- and high- carbon steels. Some observations of interphase precipitation in microalloyed low- and medium- carbon commercial steels are also reported for comparison as this reaction can be responsible for a significant increase in strength in a wide range of commercial steels.The experimental alloy was made as 50 g argon arc melts using high purity materials and homogenised. Samples were solution treated at 1300 °C for 1 hr and WQ. Specimens were then solutionised at 1300 °C for 15 min. and isothermally transformed at 620 °C for 10-18hrs. and WQ. Specimens of microalloyed commercial steels were studied in either as-rolled or as- forged conditions. Detailed procedures of thin foil preparation for TEM are given elsewhere.


2003 ◽  
Vol 112 ◽  
pp. 407-410
Author(s):  
S. A. Danilkin ◽  
M. Hölzel ◽  
H. Fuess ◽  
H. Wipf ◽  
T. J. Udovic ◽  
...  

2018 ◽  
Vol 18 (1) ◽  
pp. 125-135
Author(s):  
Sattar H A Alfatlawi

One of ways to improve properties of materials without changing the product shape toobtain the desired engineering applications is heating and cooling under effect of controlledsequence of heat treatment. The main aim of this study was to investigate the effect ofheating and cooling on the surface roughness, microstructure and some selected propertiessuch as the hardness and impact strength of Medium Carbon Steel which treated at differenttypes of heat treatment processes. Heat treatment achieved in this work was respectively,heating, quenching and tempering. The specimens were heated to 850°C and left for 45minutes inside the furnace as a holding time at that temperature, then quenching process wasperformed in four types of quenching media (still air, cold water (2°C), oil and polymersolution), respectively. Thereafter, the samples were tempered at 200°C, 400°C, and 600°Cwith one hour as a soaking time for each temperature, then were all cooled by still air. Whenthe heat treatment process was completed, the surface roughness, hardness, impact strengthand microstructure tests were performed. The results showed a change and clearimprovement of surface roughness, mechanical properties and microstructure afterquenching was achieved, as well as the change that took place due to the increasingtoughness and ductility by reducing of brittleness of samples.


Sign in / Sign up

Export Citation Format

Share Document