Vacuum sintering of plasmochemical powders based on ZrO2 II. Effect of sintering time at high temperature on the phase composition and mechanical properties of ceramics

1995 ◽  
Vol 34 (1-2) ◽  
pp. 26-30
Author(s):  
N. L. Savchenko ◽  
T. Yu. Sablina ◽  
S. N. Kul'kov
2013 ◽  
Vol 842 ◽  
pp. 220-223
Author(s):  
Bing Liang Liang ◽  
Chen Zhang ◽  
Yun Long Ai ◽  
Chang Hong Liu ◽  
Wen He ◽  
...  

WC-8Co cemented carbide specimens were prepared via vacuum sintering. The influences of sintering time on phase composition, microstructure and mechanical properties of WC-8Co cemented carbide were investigated. The results show that dense specimens were obtained in the sintering time range of 15min~60min and the relative density reached over 95%. Only WC and Co3W3C (γ-phase) were detected by XRD without any else phases, even though Co. With the ascended sintering time, the transverse rupture strength (TRS) increased and hardness ascended to peak value and then descended. WC-Co cemented carbide with excellent mechanical properties (HRA>90, TRS~630MPa and KIC>7MPa·m1/2) were obtained. It would be a good candidate for applications of friction stir welding tool.


Author(s):  
A. A. Leonov ◽  
E. V. Abdulmenova ◽  
M. P. Kalashnikov ◽  
Jing Li

This work studies the effect of the relative content of Al2O3 nanofibers on the compaction, phase composition, and physicomechanical properties of composites based on ZrO2 obtained by free vacuum sintering. It was found that in the process of manufacturing composites, nanofibers are sintered into Al2O3 grains of complex, elongated shape, which form a solid, frame-reinforcing structure. The relative density of composites with 5 wt. % and 10 wt. % of nanofibers, decreases up to 95%. It is shown that in all sintered samples the tetragonal modification of ZrO2 acts as the main phase, and the different content of nanofibers affects the amount of cubic and monoclinic modifications of ZrO2. It was found that addition of 5 wt. % and 10 wt. % of Al2O3 nanofibers increases the microhardness of the composite by 11% and crack resistance by 46%.


2008 ◽  
Vol 368-372 ◽  
pp. 1730-1732 ◽  
Author(s):  
Ping Hu ◽  
Xing Hong Zhang ◽  
Jie Cai Han ◽  
Song He Meng ◽  
Bao Lin Wang

SiC whisker-reinforced ZrB2 matrix ultra-high temperature ceramic were prepared at 2000°C for 1 h under 30MPa by hot pressing and the effects of whisker on flexural strength and fracture toughness of the composites was examined. The flexural strength and fracture toughness are 510±25MPa and 4.05±0.20MPa⋅m1/2 at room temperature, respectively. Comparing with the SiC particles-reinforced ZrB2 ceramic, no significant increase in both strength and toughness was observed. The microstructure of the composite showed that the SiC whisker was destroyed because the SiC whisker degraded due to rapid atom diffusivity at high temperature. The results suggested that some related parameters such as the lower hot-pressing temperature, a short sintering time should be controlled in order to obtain SiC whiskerreinforced ZrB2 composite with high properties.


2013 ◽  
Vol 275-277 ◽  
pp. 1917-1920
Author(s):  
Bing Liang Liang ◽  
Yun Long Ai ◽  
Chang Hong Liu ◽  
Nan Jiang

WC-Co cemented carbide specimens were prepared via vacuum sintering. The influences of composition and sintering temperature on phase composition, microstructure and mechanical properties of WC-Co cemented carbide were investigated. The results show that dense specimens were obtained in the sintering temperature range of 1280~1400°C and the relative density reached over 95%. Only WC and Co3W3C (-phase) were detected by XRD without any else phases, even though Co. With the ascended sintering temperature, hardness increased and the transverse rupture strength (TRS) ascended to peak value and then descended. WC-Co cemented carbide with excellent mechanical properties (HRA>90, TRS~700MPa and KIC>10MPa•m1/2) were obtained.


2011 ◽  
Vol 284-286 ◽  
pp. 638-641
Author(s):  
Jun Cong Wei ◽  
Xiao Cui Han ◽  
Chun Hui Gao ◽  
Jian Kun Huang ◽  
Jun Bo Tu

MgO-Al2O3-TiO2 composite refractories were prepared by using magnesium aluminate spinel (MgAl2O4) and titanium dioxide as main starting materials and being sintered at high temperature. The influences of titanium dioxide additions on the room temperature physical properties, phase composition and microstructure were investigated. The phase composition and microstructure were tested by means of XRD and SEM. The results revealed that with increasing TiO2 content, the densification of the composites first increased sand then decreased and maximized at 4% TiO2 loading. This showed appropriate amount of TiO2 could contribute to the sintering of the composites due to the solid solution of TiO2 in magnesium aluminate spinel.


2018 ◽  
Vol 279 ◽  
pp. 167-171
Author(s):  
Hao Yang ◽  
Ming Chang ◽  
Hua Jun Wang ◽  
Zhen Рua Yao

In this study, high-temperature self-lubricating material system (NiCr-Sialon-CaF2) was proposed and samples were prepared by powder metallurgy molding process under proper parameters. Samples with excellent properties can be obtained in a vacuum sintering environment of 1200° C for 2 hours and the ratio of components were Sialon ceramic-5 %, CaF2-10 % and NiCr-the rest. By XRD and EPMA test, the phase composition and its ingredients were examined. And after the high temperature properties analysis of samples with different ingredients, such as surface morphology and friction factor, the high temperature friction and wear mechanism of this self-lubricating material system was illustrated.


2011 ◽  
Vol 672 ◽  
pp. 31-38 ◽  
Author(s):  
Eva Dudrová ◽  
Marco Actis Grande ◽  
Mario Rosso ◽  
Margita Kabátová ◽  
Róbert Bidulský ◽  
...  

The effect of high temperature sintering and high cooling rate on shifting the microstructural composition to the favourably of martensite-bainite structures and thus effective improvement of mechanical properties of sintered steels based on Astaloy CrL powder with an addition of 1 and 2% Cu or 50% Distaloy AB powder and 0.65% C was investigated. All the systems were processed by both sinter-hardening and conventional sintering. The vacuum sintering at high-temperature of 1240 0C and at common temperature of 1180 0C were integrated with high (6 0C/s), medium (3 0C/s) and slow (0.1 0C/s) cooling rates; conventional sintering at 1180 0C with cooling rate of ~0.17 0C/s was carried out in a N2+10%H2 atmosphere. In dependence on chemical composition, the yield and tensile strengths of 890-1150 MPa and 913-1230 MPa respectively and impact energy of 10-15 J were achieved by sinter-hardening. The yield and tensile strengths are approximately double than those resulting from conventional sintering.


Sign in / Sign up

Export Citation Format

Share Document