Effect of TiO2 on Mechanical Properties and Microstructure of Magnesium Aluminate Spinel Refractories

2011 ◽  
Vol 284-286 ◽  
pp. 638-641
Author(s):  
Jun Cong Wei ◽  
Xiao Cui Han ◽  
Chun Hui Gao ◽  
Jian Kun Huang ◽  
Jun Bo Tu

MgO-Al2O3-TiO2 composite refractories were prepared by using magnesium aluminate spinel (MgAl2O4) and titanium dioxide as main starting materials and being sintered at high temperature. The influences of titanium dioxide additions on the room temperature physical properties, phase composition and microstructure were investigated. The phase composition and microstructure were tested by means of XRD and SEM. The results revealed that with increasing TiO2 content, the densification of the composites first increased sand then decreased and maximized at 4% TiO2 loading. This showed appropriate amount of TiO2 could contribute to the sintering of the composites due to the solid solution of TiO2 in magnesium aluminate spinel.

2014 ◽  
Vol 633 ◽  
pp. 245-248
Author(s):  
Xin Lin ◽  
Yong Li ◽  
Yan Jing Li ◽  
Jun Jie Zhang ◽  
Chang He Gao ◽  
...  

Specimens were prepared using iron-rich magnesia (3~1 mm、≤1 mm) and high purity magnesia (≤0.088 mm) as the main starting materials, adding tabular alumina at different size (3~2、2~1、≤1 mm) and content:3%、6%、9%、12%、15% to discover the influence of tabular alumina on sample performance. Phase composition and microstructure were also analyzed. The results show that specimen with content of 6% of corundum possessed the best comprehensive performance:apparent porosity 17%, bulk density 2.95 g·cm-3, cold crushing strength 74 MPa, refractoriness under load 1700 °C, heat shock resistance of up to 18 times. The formations of magnesium aluminate spinel and hercynite solid solution were enhanced by Fe ion at high temperatures in the iron-rich magnesia-corundum system at the presence of iron oxides, which are able to largely dissolved in periclase.


2011 ◽  
Vol 492 ◽  
pp. 467-471
Author(s):  
Jin Hong Li ◽  
Ling Xin Tong ◽  
Wen Cai Zhou

A new type aluminous cement containing magnesium aluminate (MA) spinel was prepared from mixtures of limestone, magnesian and bauxite at different ratios by sintering process. The phase composition, microstructure and mechanical properties of aluminous cements containing magnesium aluminate spinel were investigated in this paper. According to the XRD results, the magnesium aluminate spinel (MA),calcium monoaluminate (CA) and calcium bialuminate (CA2) are the primary phases of the obtained aluminous cements with a small quantity of calcium silicoaluminate (C2AS) and remained alumina (Al2O3). The results of SEM indicate that the MA mainly exist in the shape of octahedron with the length of about 2-5 μm, and it is agglomerated with the tabular or flaky-shaped CA among the obtained aluminous cements. In addition, the compressive strength of castables containing obtained aluminous cements increase obviously with the content of CA rising or the curing time increasing.


2012 ◽  
Vol 476-478 ◽  
pp. 467-470
Author(s):  
Jun Cong Wei ◽  
Jian Kun Huang ◽  
Chun Hui Cao ◽  
Jun Bo Tu

The effects of varying the additions of magnesium aluminate spinel (0, 3, 6, 9, 12 wt. %) on the physical properties and slag resistance of Al2O3-SiC-C based castables were investigated. The composition of the specimens was determined by X-Ray diffraction (XRD). The results revealed that the incorporation of appropriate amount of MgAl2O4 in Al2O3-SiC-C based castables could promote the sintering of the specimens, decrease apparent porosity, and improve bulk density and strength. The slag resistance of the castables was improved due to an increase in the viscosity of molten slag, caused by the solid solution of Fe2+ or Fe3+ ions from the molten slag in MgAl2O4. However, further addition would led to a decrease in slag resistance because much Mg2SiO4 was produced.


2008 ◽  
Vol 1128 ◽  
Author(s):  
Takashi Oohashi ◽  
Norihiko L. Okamoto ◽  
Kyosuke Kishida ◽  
Katsushi Tanaka ◽  
Haruyuki Inui

AbstractSince the ternary intermetallic compound Co3(Al,W) with the L12 structure was discovered, two-phase Co-base alloys composed of the γ-Co solid-solution phase and the γ'-Co3(Al,W) phase as a strengthening phase have been investigated as promising high-temperature materials. Some Co-base alloys have been reported to exhibit high-temperature strength greater than those of conventional Ni-base superalloys. Although the excellent high-temperature physical properties of the Co-based alloys are considered to result from the phase stability and strength of Co3(Al,W), the pristine physical properties of Co3(Al,W) have not been fully understood, supposedly due to the difficulties in obtaining single-phase Co3(Al,W). In the present study, we examine the effect of heat treatment on the microstructure of alloys with compositions close to single-phase Co3(Al,W) as well as their mechanical properties, e.g. elastic modulus, thermal expansion, etc., in hope of deriving the pristine properties of the Co3(Al,W) phase. A single crystal with the composition of Co-10Al-11W grown by floating-zone melting exhibits a thermal expansion coefficient of 10×10-6 K-1 at room temperature, which is virtually identical to those of the commercial Ni-base superalloys. However, it increases with increasing temperature followed by a discontinuity at around 1000°C, inferring the phase transformation from γ' to γ. The investigated thermal expansion behavior indicates that the lattice mismatch between the γ' and γ phases is reversed from positive at room temperature to negative at high temperatures above around 500°C. The results of elastic property measurement and environmental embrittlement investigation of polycrystalline Co3(Al,W) will also be presented.


2014 ◽  
Vol 794-796 ◽  
pp. 515-519 ◽  
Author(s):  
Yulia S. Oglodkova ◽  
Roman O. Vakhromov ◽  
E.A. Lukina ◽  
Dmitriy K. Ryabov

The influence of artificial aging on the phase composition and the properties of sheets made of V-1213 alloy of Al-Cu-Mg-Ag system. It is shown that the phase composition, morphology, dispersion and the density of phase discharge changes with the temperature increase of artificial aging. After the aging at the highest temperature in the range from 150 to 190 °C the maximum density of S' and Ω' phase is observed. This density provides the best combination of mechanical properties when extended at room temperature and high temperature strengthcharacteristics.


Alloy Digest ◽  
1978 ◽  
Vol 27 (12) ◽  

Abstract ALUMINUM 2011 is an age-hardenable aluminum-copper alloy to which lead and bismuth are added to make it a free-machining alloy. It has good mechanical properties and was designed primarily for the manufacture of screw-machine products. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-32. Producer or source: Various aluminum companies. Originally published October 1955, revised December 1978.


Alloy Digest ◽  
1971 ◽  
Vol 20 (8) ◽  

Abstract REYNOLDS 390 and A390 are hypereutectic aluminum-silicon alloys having excellent wear resistance coupled with good mechanical properties, high hardness, and low coefficients of expansion. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, and machining. Filing Code: Al-203. Producer or source: Reynolds Metals Company.


Alloy Digest ◽  
1985 ◽  
Vol 34 (5) ◽  

Abstract ALUMINUM 319.0 is a general-purpose foundry alloy that is moderately responsive to heat treatment. It has excellent casting characteristics and good mechanical properties. Among its many uses are crankcases, housings, engine parts, typewriter frames and rear-axle housings. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as creep and fatigue. It also includes information on low and high temperature performance as well as casting, heat treating, machining, and joining. Filing Code: Al-256. Producer or source: Various aluminum companies.


Alloy Digest ◽  
1970 ◽  
Vol 19 (4) ◽  

Abstract INCONEL Alloy 601 is a nickel-chromium solid-solution alloy with excellent high-temperature properties which make it attractive for many application in aerospace and process industries. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-152. Producer or source: Huntington Alloy Products Division, An INCO Company.


Alloy Digest ◽  
1977 ◽  
Vol 26 (4) ◽  

Abstract STOODY 4 is a cobalt-chromium-tungsten alloy with excellent high-temperature strength and excellent resistance to corrosion. This alloy derives its high-temperature strength from the high tungsten-to-carbon ratio which allows a large percentage of tungsten to remain in solid solution. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength. It also includes information on high temperature performance and corrosion resistance as well as heat treating, machining, and joining. Filing Code: Co-75. Producer or source: WRAP Division, Stoody Company.


Sign in / Sign up

Export Citation Format

Share Document