Scattering of light pulses by spherical particles with high refractive index

1974 ◽  
Vol 20 (1) ◽  
pp. 111-115
Author(s):  
A. N. Kalinenko ◽  
S. D. Tvorogov
2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Dmitry Markovich ◽  
Kseniia Baryshnikova ◽  
Alexander Shalin ◽  
Anton Samusev ◽  
Alexander Krasnok ◽  
...  

Abstract All-dielectric “magnetic light” nanophotonics based on high refractive index nanoparticles allows controlling magnetic component of light at nanoscale without having high dissipative losses. The artificial magnetic optical response of such nanoparticles originates from circular displacement currents excited inside those structures and strongly depends on geometry and dispersion of optical materials. Here an approach for enhancing of magnetic response via resonant bianisotropy effect is proposed and analyzed. The key mechanism of enhancement is based on electric-magnetic interaction between two electrically and magnetically resonant nanoparticles of all-dielectric dimer. It was shown that proper geometrical arrangement of the dimer in respect to the incident illumination direction allows flexible control over all vectorial components of the magnetic moment, tailoring the latter in the dynamical range of 100% and delivering enhancement up to 36% relative to performances of standalone spherical particles. The proposed approach provides pathways for designs of all-dielectric metamaterials and metasurfaces with strong magnetic responses.


The investigation which follows was undertaken with the object of arriving at a theory of the scattering of light by dense turbid media, which would be applicable, in particular, to opal diffusing glasses. The theory is developed on fairly general lines and applies to a system composed of a large number of similar spherical particles of a dielectric suspended in a by medium, provided the relative refractive index is not far from unity. He expressions derived show how the total transmission and reduction of a sheet of a medium containing the particles depends on the following variables; the refractive index of the medium, the side and number of the particles and their refractive index, the wave-length of the incident light and its distribution, that is whether it is diffuse or in the form of a parallel beam, the absorption coefficient of the medium in which the particles are suspended, and the thickness of the sheet. In Part I the general theory is developed, and in Part II numerical values of the necessary coefficients are computed, As a check on the theory, the size and number of the particles in a certain opal glass are deduced from photometric observations of its transmission and rejection. These calculated values are shown to be in agreement with those obtained by direct observation.


2017 ◽  
Vol 42 (4) ◽  
pp. 835 ◽  
Author(s):  
Pavel D. Terekhov ◽  
Kseniia V. Baryshnikova ◽  
Alexander S. Shalin ◽  
Alina Karabchevsky ◽  
Andrey B. Evlyukhin

2019 ◽  
Author(s):  
Mohammad Atif Faiz Afzal ◽  
Mojtaba Haghighatlari ◽  
Sai Prasad Ganesh ◽  
Chong Cheng ◽  
Johannes Hachmann

<div>We present a high-throughput computational study to identify novel polyimides (PIs) with exceptional refractive index (RI) values for use as optic or optoelectronic materials. Our study utilizes an RI prediction protocol based on a combination of first-principles and data modeling developed in previous work, which we employ on a large-scale PI candidate library generated with the ChemLG code. We deploy the virtual screening software ChemHTPS to automate the assessment of this extensive pool of PI structures in order to determine the performance potential of each candidate. This rapid and efficient approach yields a number of highly promising leads compounds. Using the data mining and machine learning program package ChemML, we analyze the top candidates with respect to prevalent structural features and feature combinations that distinguish them from less promising ones. In particular, we explore the utility of various strategies that introduce highly polarizable moieties into the PI backbone to increase its RI yield. The derived insights provide a foundation for rational and targeted design that goes beyond traditional trial-and-error searches.</div>


2013 ◽  
Vol 28 (6) ◽  
pp. 671-676 ◽  
Author(s):  
Yu-Qing ZHANG ◽  
Li-Li ZHAO ◽  
Shi-Long XU ◽  
Chao ZHANG ◽  
Xiao-Ying CHEN ◽  
...  

Author(s):  
Zhiyou Li ◽  
Zao Yi ◽  
Tinting Liu ◽  
Li Liu ◽  
Xifang Chen ◽  
...  

In this paper, we designed a three-band narrowband perfect absorber based on Bulk Dirac semimetallic (BDS) metamaterials. The absorber consists of a hollow Dirac semimetallic layer above, a gold layer...


2021 ◽  
Author(s):  
Nicole Ziegenbalg ◽  
Ruth Lohwasser ◽  
Giovanni D’Andola ◽  
Torben Adermann ◽  
Johannes Christopher Brendel

Polyethersulfones are an interesting class of polymers for industrial applications due to their unusual properties such as a high refractive index, flame-retardant properties, high temperature and chemical resistance. The common...


Sign in / Sign up

Export Citation Format

Share Document