Influence of carbon on the mechanical properties of austenitic steel at low temperatures

1966 ◽  
Vol 8 (5) ◽  
pp. 370-372
Author(s):  
E. A. Ul'yanin ◽  
A. A. Babakov
2020 ◽  
Vol 2020 (12) ◽  
pp. 1439-1445
Author(s):  
I. O. Bannykh ◽  
O. A. Bannykh ◽  
L. G. Rigina ◽  
E. N. Blinova ◽  
K. Yu. Demin ◽  
...  

Author(s):  
S O Akaev ◽  
A S Dikov ◽  
L A Dikova ◽  
S B Kislitsin ◽  
V V Firsova ◽  
...  

2016 ◽  
Vol 35 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Zhiyuan Liang ◽  
Wanhua Sha ◽  
Qinxin Zhao ◽  
Chongbin Wang ◽  
Jianyong Wang ◽  
...  

AbstractThe effect of aging heat treatment on the microstructure and mechanical properties of 10Cr20Ni25Mo1.5NbN austenitic steel was investigated in this article. The microstructure was characterized by scanning electron microscopy, energy dispersive spectrometry and transmission electron microscopy. Results show that the microstructure of 10Cr20Ni25Mo1.5NbN austenitic is composed of austenite. This steel was strengthened by precipitates of secondary phases that were mainly M23C6 carbides and NbCrN nitrides. As aging treatment time increased, the tensile strength first rose (0–3,000 h) and then fell (3,000–5,000 h) due to the decrease of high density of dislocations. The impact absorbed energy decreased sharply, causing the sulfides to precipitate at the grain boundary. Therefore, the content of sulfur should be strictly controlled in the steelmaking process.


Author(s):  
Weidong Zhao ◽  
Guoqing Feng ◽  
Bernt J. Leira ◽  
Huilong Ren

Abstract The mechanical properties of welded DH36 steel at low temperatures are important to the safety of structures in Polar areas. The purpose of the study is to investigate the static and cyclic behavior of welded DH36 steel at low temperatures based on tensile and fatigue tests. The Ductile to Brittle transition and Fatigue Ductile to Brittle Transition of welded DH36 steel occurred at low temperatures. Finally, some relevant applications of the results within the context of polar engineering and design are discussed in the last part of the present study.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Li Wang ◽  
Hongliang Zhang ◽  
Yang Gao

Low temperature negatively affects the engineering performance of cementitious materials and hinders the construction productivity. Previous studies have already demonstrated that TiO2 nanoparticles can accelerate cement hydration and enhance the strength development of cementitious materials at room temperature. However, the performance of cementitious materials containing TiO2 nanoparticles at low temperatures is still unknown. In this study, specimens were prepared through the replacement of cement with 1 wt.%, 2 wt.%, 3 wt.%, 4 wt.%, and 5 wt.% TiO2 nanoparticles and cured under temperatures of 0°C, 5°C, 10°C, and 20°C for specific ages. Physical and mechanical properties of the specimens were evaluated through the setting time test, compressive strength test, flexural strength test, hydration degree test, mercury intrusion porosimetry (MIP), X-ray diffraction (XRD) analysis, thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM) in order to examine the performance of cementitious materials with and without TiO2 nanoparticles at various curing temperatures. It was found that low temperature delayed the process of cement hydration while TiO2 nanoparticles had a positive effect on accelerating the cement hydration and reducing the setting time in terms of the results of the setting time test, hydration degree test, and strength test, and the specimen with the addition of 2 wt.% TiO2 nanoparticles showed the superior performance. Refined pore structure in the MIP tests, more mass loss of CH in TGA, intense peak appearance associated with the hydration products in XRD analysis, and denser microstructure in SEM demonstrated that the specimen with 2 wt.% TiO2 nanoparticles exhibited preferable physical and mechanical properties compared with that without TiO2 nanoparticles under various curing temperatures.


2016 ◽  
Vol 52 (8) ◽  
pp. 4224-4233 ◽  
Author(s):  
Elena G. Astafurova ◽  
Valentina A. Moskvina ◽  
Galina G. Maier ◽  
Eugene V. Melnikov ◽  
Gennady N. Zakharov ◽  
...  

Author(s):  
L. M. Ma ◽  
G. J. Liang ◽  
L. J. Rong ◽  
S. H. He ◽  
Y. Y. Li

Sign in / Sign up

Export Citation Format

Share Document