Effect of preliminary plastic deformation on the mechanical properties of austenitic steel at low temperatures

1983 ◽  
Vol 15 (8) ◽  
pp. 1072-1076 ◽  
Author(s):  
A. A. Lebedev ◽  
V. N. Rudenko ◽  
B. I. Koval'chuk
2008 ◽  
Vol 584-586 ◽  
pp. 227-230 ◽  
Author(s):  
Alex M. Glezer ◽  
Sergey V. Dobatkin ◽  
Margarita R. Plotnikova ◽  
Anna V. Shalimova

The structure and mechanical properties of amorphous alloy Ni44Fe29Co15Si2B10 after severe plastic deformation (SPD) in Bridgman chamber at the different temperatures (77 and 298 K) have been studied. It is shown that the early stages of the SPD of amorphous alloy cause a noticeable decrease in microhardness HV and significant changes in the physical properties. With increasing the value of SPD the transition from inhomogeneous to homogeneous (or to qualitatively different) mode of plastic flow is observed, which is accompanied by the effects of homogeneous nanocrystallization. The nanoparticle size does not exceed 10 nm. It is established that the thermally activated nanocrystallization processes can occur at very low temperatures (77 K).


1971 ◽  
Vol 13 (10) ◽  
pp. 836-839
Author(s):  
A. I. Uvarov ◽  
K. A. Malyshev ◽  
V. A. Mirmel'shtein ◽  
P. A. Ustyugov

2012 ◽  
Vol 47 (4) ◽  
pp. 438-446
Author(s):  
O. I. Balyts’kyi ◽  
J. Eliasz ◽  
I. V. Ripei

1988 ◽  
Vol 20 (9) ◽  
pp. 1178-1182
Author(s):  
P. V. Yasnii ◽  
V. V. Pokrovskii ◽  
A. S. Shtukaturova ◽  
V. N. Krasiko ◽  
B. T. Timofeev

2018 ◽  
Vol 1 (1) ◽  
pp. 77-90
Author(s):  
Walaa Abdelaziem ◽  
Atef Hamada ◽  
Mohsen A. Hassan

Severe plastic deformation is an effective method for improving the mechanical properties of metallic alloys through promoting the grain structure. In the present work, simple cyclic extrusion compression technique (SCEC) has been developed for producing a fine structure of cast Al-1 wt. % Cu alloy and consequently enhancing the mechanical properties of the studied alloy. It was found that the grain structure was significantly reduced from 1500 µm to 100 µm after two passes of cyclic extrusion. The ultimate tensile strength and elongation to failure of the as-cast alloy were 110 MPa and 12 %, respectively. However, the corresponding mechanical properties of the two pass CEC deformed alloy are 275 MPa and 35%, respectively. These findings ensure that a significant improvement in the grain structure has been achieved. Also, cyclic extrusion deformation increased the surface hardness of the alloy by 49 % after two passes. FE-simulation model was adopted to simulate the deformation behavior of the material during the cyclic extrusion process using DEFORMTM-3D Ver11.0. The FE-results revealed that SCEC technique was able to impose severe plastic strains with the number of passes. The model was able to predict the damage, punch load, back pressure, and deformation behavior.


2020 ◽  
Vol 2020 (12) ◽  
pp. 1439-1445
Author(s):  
I. O. Bannykh ◽  
O. A. Bannykh ◽  
L. G. Rigina ◽  
E. N. Blinova ◽  
K. Yu. Demin ◽  
...  

2006 ◽  
Vol 113 ◽  
pp. 334-338
Author(s):  
Z. Dreija ◽  
O. Liniņš ◽  
Fr. Sudnieks ◽  
N. Mozga

The present work deals with the computation of surface stresses and deformation in the presence of friction. The evaluation of the elastic-plastic contact is analyzed revealing three distinct stages that range from fully elastic through elastic-plastic to fully plastic contact interface. Several factors of sliding friction model are discussed: surface roughness, mechanical properties and contact load and areas that have strong effect on the friction force. The critical interference that marks the transition from elastic to elastic- plastic and plastic deformation is found out and its connection with plasticity index. A finite element program for determination contact analysis of the assembled details and due to details of deformation that arose a normal and tangencial stress is used.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 645
Author(s):  
Igor Litovchenko ◽  
Sergey Akkuzin ◽  
Nadezhda Polekhina ◽  
Kseniya Almaeva ◽  
Evgeny Moskvichev

The effect of high-temperature thermomechanical treatment on the structural transformations and mechanical properties of metastable austenitic steel of the AISI 321 type is investigated. The features of the grain and defect microstructure of steel were studied by scanning electron microscopy with electron back-scatter diffraction (SEM EBSD) and transmission electron microscopy (TEM). It is shown that in the initial state after solution treatment the average grain size is 18 μm. A high (≈50%) fraction of twin boundaries (annealing twins) was found. In the course of hot (with heating up to 1100 °C) plastic deformation by rolling to moderate strain (e = 1.6, where e is true strain) the grain structure undergoes fragmentation, which gives rise to grain refining (the average grain size is 8 μm). Partial recovery and recrystallization also occur. The fraction of low-angle misorientation boundaries increases up to ≈46%, and that of twin boundaries decreases to ≈25%, compared to the initial state. The yield strength after this treatment reaches up to 477 MPa with elongation-to-failure of 26%. The combination of plastic deformation with heating up to 1100 °C (e = 0.8) and subsequent deformation with heating up to 600 °C (e = 0.7) reduces the average grain size to 1.4 μm and forms submicrocrystalline fragments. The fraction of low-angle misorientation boundaries is ≈60%, and that of twin boundaries is ≈3%. The structural states formed after this treatment provide an increase in the strength properties of steel (yield strength reaches up to 677 MPa) with ductility values of 12%. The mechanisms of plastic deformation and strengthening of metastable austenitic steel under the above high-temperature thermomechanical treatments are discussed.


Sign in / Sign up

Export Citation Format

Share Document