Surface hardening of steel ShKh15

1972 ◽  
Vol 14 (11) ◽  
pp. 1004-1005
Author(s):  
A. D. Assonov ◽  
R. N. Braverman ◽  
E. A. Ostrovskaya ◽  
V. T. Chirikov ◽  
S. I. Shchipunova
1988 ◽  
Vol 30 (1) ◽  
pp. 71-73
Author(s):  
A. A. Shul'ga ◽  
G. V. Dudko ◽  
A. I. Solov'ev

2020 ◽  
pp. 339-342
Author(s):  
V.F. Bez’yazychny ◽  
M.V. Timofeev ◽  
R.V. Lyubimov ◽  
E.V. Kiselev

The theoretical justification for the hardening process of the surface layer of machine parts for combined methods of surface hardening with subsequent application of strengthening coatings, as well as reducing or increasing the fatigue limit due to the fretting process is presented.


2020 ◽  
pp. 252-255
Author(s):  
V.I. Bolobov ◽  
V.S. Bochkov ◽  
E.V. Akhmerov ◽  
V.A. Plashchinsky ◽  
E.A. Krivokrisenko E.A.

On the example of Hadfield steel, as the most common material of fast-wearing parts of mining equipment, the effect of surface hardening by plastic deformation on their impact and abrasive wear resistance is considered. Wear test is conducted on magnetic ironstone as typical representative of abrasive and hard rock. As result of wear of initial samples with hardness of ∼200 HB and samples pre-hardened with different intensities to the hardness of 300, 337 and 368 HB, it is found that during the initial testing period, the initial samples pass the “self-cold-work hardening” stage with increase in hardness to ∼250 HB, which remains virtually unchanged during further tests; the hardness of the pre-hardened samples does not change significantly throughout the tests. It is established that the rate of impact-abrasive wear of pre-hardened samples is significantly (up to 1.4 times) lower than the original ones that are not subjected to plastic deformation, and decreases with increasing degree of cold-work hardening. Preliminary surface hardening by plastic deformation can serve as effective way to increase the service life of fast-wearing working parts of mining equipment.


2020 ◽  
pp. 200-204
Author(s):  
Yu.S. Semenova ◽  
A.G. Samul’ ◽  
S.V. Mazhuga

Overview of the research results got by various scientific schools in the field of application of ultrasonic surface hardening is provided. Wide range of opportunities of ultrasonic surface hardening is shown for the application in the preliminary machining of surfaces before thermal and chemical treatment, coating, and also as finishing machining. The effect of the energy of ultrasonic vibrations on structure changes in the material of the surface layer and on surface microrelief on parts performance is considered. The prospects of using of the ultrasonic surface hardening method in combination with other methods of the material modification are presented. In addition the possibilities of reducing the manufacturing cost of product by introducing ultrasonic surface hardening into the technological process are shown.


Author(s):  
O. B. Berdnik ◽  
I. N. Tsareva ◽  
L. A. Krivina ◽  
S. V. Kirikov ◽  
S. I. Gerasimov ◽  
...  

When conducting impact tests of protective glasses, nonunique cases of destruction of balls made of bearing steel ShKh15 were recorded. The causes of their destruction were determined. The state of the material was studied by fractographic and metallographic analysis, hardness and microhardness measurement. In the structure of the metal of all the balls, no critical defects were found such as flockens, shells and microcracks, but adverse factors were detected in the microstructure of the material, namely, the presence of fineneedle martensite with excessive carbides. It is established that the detected structural factors lead to liability to brittle fracture, an increase in the hardness of the material, a decrease in plasticity. To prevent brittle fracture of the balls and provide a reserve of plasticity of steel ShKh15 at high shock loads assessment calculations of ductility coefficient were made; and it was recommended to limit the maximum hardness of the material critical value HV=5.70 HPa (54 HRC), with the corresponding plasticity coefficient equal to 0.8.


2020 ◽  
Vol 10 (1) ◽  
pp. 408-414
Author(s):  
Nurul Muhayat ◽  
Alvian Restu Putra Utama ◽  

AbstractMechanical alloying can be carried out by a method known as friction stir processing, whereby solid Zn particles in a solution are distributed onto an aluminium alloy plate. The aim of this study was to determine the effects of a volume of Zn particles on the mechanical and physical properties of aluminium 1xxx alloy that had been subjected to friction stir processing. The specimens were plates composed of 1xxx series aluminium. A groove, measuring 12 mm in diameter, was pierced to various depths, and the Zn particles in these containers were then subjected to friction stir processing using a pin-less tool with a diameter of 15 mm. The results showed that the highest hardness was found in the uppermost layer of the workpiece, and this gradually decreased with thickness. An increase in the amount of Zn particles caused an increase in material hardness. The highest hardness of 87.1 HV in the friction stir-processed AA1100 was obtained at the highest volume of Zn compared to the hardness of 44.5 HV, which was obtained for the specimen without the addition of Zn.


Author(s):  
L. Orazi ◽  
A. Rota ◽  
B. Reggiani

AbstractLaser surface hardening is rapidly growing in industrial applications due to its high flexibility, accuracy, cleanness and energy efficiency. However, the experimental process optimization can be a tricky task due to the number of involved parameters, thus suggesting for alternative approaches such as reliable numerical simulations. Conventional laser hardening models compute the achieved hardness on the basis of microstructure predictions due to carbon diffusion during the process heat thermal cycle. Nevertheless, this approach is very time consuming and not allows to simulate real complex products during laser treatments. To overcome this limitation, a novel simplified approach for laser surface hardening modelling is presented and discussed. The basic assumption consists in neglecting the austenite homogenization due to the short time and the insufficient carbon diffusion during the heating phase of the process. In the present work, this assumption is experimentally verified through nano-hardness measurements on C45 carbon steel samples both laser and oven treated by means of atomic force microscopy (AFM) technique.


Sign in / Sign up

Export Citation Format

Share Document