scholarly journals High-temperature corrosion and mechanical properties of protective scales on Incoloy 800H: The influence of preoxidation and ion implantation

1990 ◽  
Vol 33 (1-2) ◽  
pp. 135-155 ◽  
Author(s):  
E. A. Polman ◽  
T. Fransen ◽  
P. J. Gellings
2015 ◽  
Vol 662 ◽  
pp. 115-118 ◽  
Author(s):  
Zdeněk Česánek ◽  
Jan Schubert ◽  
Šárka Houdková ◽  
Olga Bláhová ◽  
Michaela Prantnerová

Coating properties determine its behavior in operation. The simulation of future operational conditions is therefore the best quality test. The evaluation during operation is usually not possible to perform, and the coatings are therefore frequently characterized by their physical or mechanical properties. This text deals with the high temperature corrosion of HVOF sprayed Stellite 6 coating and with changes of its local mechanical properties before and after the corrosion testing. High temperature corrosion is defined as a corrosion in the presence of molten salts. In this case, the mixture of salts in composition of 59% Na2(SO)4 with 34.5% KCl and 6.5% NaCl was used. Two exposure temperatures 525 °C and 575 °C were selected and the tests for both temperatures were performed in the time interval of 168h in the autoclave. The coating with salt mixture layer was analyzed using scanning electron microscopy and nanoindentation. The high temperature resistance of Stellite 6 coating was evaluated according to the changes in the coating surface and by the occurrence of individual phases formed on the coating surface during the test. Generally, it can be said that the Stellite 6 alloys deposited by HVOF technology show selective oxidation under the salt film. This fact was also proved in this study. Furthermore, the nanoindentation measurements of Stellite 6 coating were performed before and after the corrosion testing. These measurements were used to evaluate the change of local mechanical coating properties.


2010 ◽  
Vol 85 (7-9) ◽  
pp. 1702-1706 ◽  
Author(s):  
I.B. Kupriyanov ◽  
V.N. Kudryavtsev ◽  
L.A. Kurbatova ◽  
I.E. Lyublinski

Author(s):  
Grzegorz Cieślak ◽  
Juliusz Dąbrowa ◽  
Monika Jawańska ◽  
Agnieszka Parzuchowska ◽  
Dariusz Oleszak

AbstractA number of non-equimolar refractory high entropy alloys (RF HEAs) from the Al–Ti–Mo–Nb–V system are synthesized, with the selected compositions aimed to balance the conflicting requirements of the low-temperature ductility and high-temperature corrosion protection. Based on the thermodynamic modeling and experimental results, all the obtained alloys are characterized by the single-phase B2 structure with V acting as the main phase stabilizer. The microstructure and mechanical properties appear to be controlled mainly by the Al content, which is especially visible on the example of hardness, with a maximum value of 545 HV for Al20Ti5Mo25Nb25V25 composition. For the selected Al20Ti5Mo25Nb25V25 and Al10Ti30Mo20Nb20V20 alloys, the measured stress–strain curves indicate the highly coveted, ductile room temperature behavior, with the values of ultimate strain measured under compression mode being 9.17 and 9.00 pct, respectively, and compressive fracture strain of 13.38 and 13.25 pct, respectively. The obtained results suggest that it is possible to include Al as a vital component of refractory HEAs without compromising their low-temperature ductility. The next intended step will be the characterization of the high-temperature corrosion behavior in order to investigate the potential selective oxidation capabilities of such materials.


Sign in / Sign up

Export Citation Format

Share Document