Composition, structure, and corrosion resistance in dilute sulfur of a multicomponent coating in steel St3

1982 ◽  
Vol 24 (1) ◽  
pp. 28-30
Author(s):  
P. I. Ignatenko ◽  
N. E. Prodan ◽  
N. P. Ivanitsyn
2010 ◽  
Vol 105-106 ◽  
pp. 505-508 ◽  
Author(s):  
Zhen Dong Wu ◽  
Zhong Wen Yao ◽  
Fang Zhou Jia ◽  
Zhao Hua Jiang

The coatings containing zirconia were produced on LY12 Aluminium alloy by micro-arc oxidation in K2ZrF6 and NaH2PO2 solution. The composition, structure, hardness, friction and wear resistance and corrosion resistance of the coating were studied by XRD, SEM, EDS, ball-on-disk friction tester and electrochemical analyzer, respectively. The results show that coating was composed of m-ZrO2 and t-ZrO2. There were a large amount of Zr and O and a little Al, P and K in the coating. The thickness of coating prepared for 3h was 168μm and the maximum value of the hardness was up to 16.75GPa. The friction and wear resistance and corrosion resistance were improved, compared with the LY12 aluminium alloy substrate.


2016 ◽  
Vol 3 (1) ◽  
pp. 40-44
Author(s):  
Radoslav Ivanov ◽  
Tsveteslava Ignatova-Ivanova

Abstract Corrosion is the cause of irretrievable loss of huge amounts of metals and alloys. The harmful effects of corrosion can be reduced significantly by applying appropriate methods of corrosion protection. One method to protect metals against corrosion is the formation of diffusion coatings on them. High corrosion resistance is typical for the boride diffusion layers. Aluminothermy is one of the main methods for diffusion saturation of the surface of metal products with various elements, including boron, and under certain conditions with aluminum, too. Samples of steel 45 were put to aluminothermic diffusion saturation with boron in a pressurized steel container at a temperature of 1100K, for 6 hours in powdered aluminothermic mixtures. The content of В2О3 in the starting mixtures decreased from the optimum - 20% to 0%, and the content of Al and the activator - (NH4)2.4BF3 is constant, respectively 7% and 0.5%. Al2O3 was used as filler. The borided samples were tested for corrosion resistance in 10% HCl for 72 hours. The results show that their corrosion resistance depends on the composition of the starting saturating mixture (mainly on the content of В2О3), and respectively on the composition, structure, thickness and degree of adhesion of the layer to the metal base.


2006 ◽  
Vol 985 ◽  
Author(s):  
Joseph Collin Farmer ◽  
J. Haslam ◽  
D. Day ◽  
T. Lian ◽  
C. Saw ◽  
...  

ABSTRACTThe passive film stability of several Fe-based amorphous metal formulations have been found to be comparable to that of high-performance Ni-based alloys, and superior to that of stainless steels, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. Chromium (Cr), molybdenum (Mo) and tungsten (W) provide corrosion resistance; boron (B) enables glass formation; and rare earths such as yttrium (Y) lower critical cooling rate (CCR). The high boron content of this particular amorphous metal also makes it an effective neutron absorber, and suitable for criticality control applications, as discussed in companion publications. Corrosion data for SAM2X5 (Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4) is discussed here.


2012 ◽  
Vol 190-191 ◽  
pp. 595-598
Author(s):  
Ze Min Chen ◽  
Pin Lu ◽  
Qiu Hong Dong

This study selected sodium silicate, sodium fluoride, glycerol hydroxyl acid, potassium hydroxide and phosphine oxide (LAP) as the stabilizer electrolyte, and then on micro-arc oxidation of magnesium with constant current density. The microstructure, corrosion resistance, chemical composition, structure and characterization of micro-arc oxidation film were determined by SEM and anodic oxidation methods. Experimental results indicated that the test pieces of magnesium would formed an silver-gray uniform densification oxide film on the surface by micro-arc oxidation treatment, and the corrosion resistance of magnesium film-formed had increased by potentiodynamic polarization curve testing.


1980 ◽  
Vol 9 (4) ◽  
pp. 201-207 ◽  
Author(s):  
M Semlitsch

Loosening of prosthetic components in the bone is a problem that has not been fully explored as yet. When loosening has occurred, the metallic anchorage stem may become overloaded and in extreme cases it may ultimately lead to stem fracture if the fatigue limit of the metallic material is exceeded. In order to preclude the possibility of these undesirable fatigue fractures of loosened prosthesis stems requiring re-operations, the Sulzer research laboratories have developed wrought alloys of extremely high strength and corrosion resistance such as Protasul-10.† The chemical composition, structure, mechanical properties, corrosion resistance and present state of the art of this implant material, which has been in clinical use since 1971, are specified in national and international standards.


2008 ◽  
Vol 55 (5) ◽  
pp. 264-269 ◽  
Author(s):  
Deng Shu‐hao ◽  
Yi Dan‐qing ◽  
Gong Zhu‐qing ◽  
Su Yu‐chang

PurposeTo obtain an optimized microarc oxidation (MAO) coating on magnesium alloy from an environmentally‐friendly electrolyte free of Cr6 +  and PO43− and to investigate the influence of oxidation potential on the morphology, composition, structure, and other properties such as micro‐hardness and corrosion resistance.Design/methodology/approachA constant potential regime was applied to produce the coatings and scanning electron microscopy, energy dispersive spectroscope, X‐ray diffraction, hardness testing and electrochemical methods were used to study coating properties.FindingsThe results clearly show that oxidation potential plays an important role in the formation of coating structure and properties. The MAO coating is smooth and white and consists of two layers. The external layer is loose and porous and enriched in Al and Si. Moreover, the content of Al and Si increase with operated potential. The inner layer is compact and the content of Al and Si are lower than are those of the external layer. The coating is composed of several phases: the main phase is MgAl2O4/MgO, and the minor phase is Al2O3/SiO2 when the potential is higher. The micro‐hardness of the coating obtained a maximum at a potential of 45 V, as does the corrosion resistance.Originality/valueThis paper provides information relating to MAO technology and the morphology, structure and properties of MAO coatings.


2015 ◽  
Vol 60 (4) ◽  
pp. 2579-2584 ◽  
Author(s):  
N. Radek ◽  
J. Konstanty ◽  
M. Scendo

The main objective of the present work was to determine the influence of laser treatment on microstructure, X-ray diffraction, microhardness, surface geometric structure and roughness, corrosion resistance and tribological properties of coatings deposited on C45 carbon steel by the electro-spark deposition (ESD) process. The studies were conducted using WC-Cu electrodes produced by the powder metallurgy route. The tests show that the laser-treated electro-spark deposited WC-Cu coatings are characterized by higher corrosion resistance, surface roughness and seizure resistance which come at the expense of lower microhardness. The laser treatment process causes the homogenization of the chemical composition, structure refinement and healing of microcracks and pores of the electro-spark deposited coatings. Laser treated ESD coatings can be applied in sliding friction pairs and as protective coatings.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gloria I. Cubillos ◽  
Eduard Romero ◽  
Adriana Umaña-Perez

AbstractZrN-ZrO$${ }_{x}$$ x N$${ }_{y}$$ y and ZrO$${ }_{2}$$ 2 -ZrO$${ }_{x}$$ x N$${ }_{y}$$ y coatings were deposited on 316L stainless steel substrates via the unbalanced DC magnetron sputtering technique in order to improve their corrosion resistance and evaluate their possible use as a coating biocompatible with bone cells. The composition, structure, morphology, and corrosion resistance were studied by sum means of x-ray photoelectron spectroscopy (XPS), x-Ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The corrosion resistance was evaluated in 3.5 wt.% NaCl using potentiodynamic polarization (PL) and electrochemical impedance techniques (EIS). The ZrN-ZrO$${ }_{x}$$ x N$${ }_{y}$$ y and ZrO$${ }_{2}$$ 2 -ZrO$${ }_{x}$$ x N$${ }_{y}$$ y coatings exhibited barrier-type protection of the substrate against corrosion. The growth of mouse osteoblast cells was evaluated in the coating that exhibited the greatest resistance to corrosion, ZrO$${ }_{2}$$ 2 -ZrO$${ }_{x}$$ x N$${ }_{y}$$ y , finding that the cell viability was maintained, so this material can be considered to be a candidate for use in osteosynthesis processes.


Author(s):  
Anna C. Fraker

Small amounts of nickel are added to titanium to improve the crevice corrosion resistance but this results in an alloy which has sheet fabrication difficulties and is subject to the formation of large Ti2Ni precipitates. These large precipitates can serve as local corrosion sites; but in a smaller more widely dispersed form, they can have a beneficial effect on crevice corrosion resistance. The purpose of the present work is to show that the addition of a small amount of Mo to the Ti-1.5Ni alloy reduces the Ti2Ni precipitate size and produces a more elongated grained microstructure. It has recently been reported that small additions of Mo to Ti-0.8 to lw/o Ni alloys produce good crevice corrosion resistance and improved fabrication properties.


Sign in / Sign up

Export Citation Format

Share Document