scholarly journals ZrN-ZrOxNy vs ZrO2-ZrOxNy coatings deposited via unbalanced DC magnetron sputtering

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gloria I. Cubillos ◽  
Eduard Romero ◽  
Adriana Umaña-Perez

AbstractZrN-ZrO$${ }_{x}$$ x N$${ }_{y}$$ y and ZrO$${ }_{2}$$ 2 -ZrO$${ }_{x}$$ x N$${ }_{y}$$ y coatings were deposited on 316L stainless steel substrates via the unbalanced DC magnetron sputtering technique in order to improve their corrosion resistance and evaluate their possible use as a coating biocompatible with bone cells. The composition, structure, morphology, and corrosion resistance were studied by sum means of x-ray photoelectron spectroscopy (XPS), x-Ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The corrosion resistance was evaluated in 3.5 wt.% NaCl using potentiodynamic polarization (PL) and electrochemical impedance techniques (EIS). The ZrN-ZrO$${ }_{x}$$ x N$${ }_{y}$$ y and ZrO$${ }_{2}$$ 2 -ZrO$${ }_{x}$$ x N$${ }_{y}$$ y coatings exhibited barrier-type protection of the substrate against corrosion. The growth of mouse osteoblast cells was evaluated in the coating that exhibited the greatest resistance to corrosion, ZrO$${ }_{2}$$ 2 -ZrO$${ }_{x}$$ x N$${ }_{y}$$ y , finding that the cell viability was maintained, so this material can be considered to be a candidate for use in osteosynthesis processes.

Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 797
Author(s):  
Andrés González-Hernández ◽  
Ana Beatriz Morales-Cepeda ◽  
Martín Flores ◽  
Julio C. Caicedo ◽  
William Aperador ◽  
...  

Nitride and carbide ternary coatings improve the wear and corrosion resistance of carbon steel substrates. In this work, Ti-W-N and Ti-W-C coatings were deposited on AISI 1060 steel substrates using reactive radio frequency (RF) magnetron sputtering. The coatings were designed as monolayers, bilayers, and multilayers of 40 periods. The coatings were obtained with simultaneous sputtering of Ti and W targets. The microstructure, composition, and electrochemical properties were investigated by techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization. XRD results shower a mix of binary TiN and W2N structures in the Ti-W-N layer, a ternary phase in Ti-W-C layers, in addition of a quaternary phase of Ti-W-CN in the multilayers. The analysis of the XPS demonstrated that the atomic concentration of Ti was more significant than W in the Ti-W-N and Ti-W-C layers. The lowest corrosion rate (0.19 mm/year−1) and highest impedance (~10 kΩ·cm2) out of all coatings were found in n = 40 bilayers. In the simulation of equivalent electrical circuits, it was found that the Ti-W-N coating presented three processes of impedance (Pore resistance + Coating + Inductance). However, the multilayer (n = 40) system presented a major dielectric constant through the electrolyte adsorption; therefore, this caused an increase in the capacitance of the coating.


2019 ◽  
Vol 26 (10) ◽  
pp. 1950080
Author(s):  
JIBO JIANG ◽  
HAOTIAN CHEN ◽  
LIYING ZHU ◽  
YAOXIN SUN ◽  
WEI QIAN ◽  
...  

Graphene oxide (GO) sheet and ultrasonic field (UF) were successfully employed to produce Ni–B/GO and UF–Ni–B/GO composite coatings on Q235 mild steel by electroless plating. The composite coatings’ structure and surface morphology were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Results showed that GO was successfully co-deposited in the Ni–B alloy. Moreover, UF–Ni–B/GO composite coatings have smoother surface and thicker cross-section than others. The microhardness and corrosion resistance of the sample coatings were determined using Vickers hardness tests, Tafel electrochemical tests and electrochemical impedance measurements (EIS) in 3.5[Formula: see text]wt.% NaCl solution to receive the effect of GO and ultrasonic. The findings indicated that UF–Ni–B/GO exhibited optimum hardness (856[Formula: see text]HV) and enhanced corrosion resistance (6.38 [Formula: see text][Formula: see text] over the Ni–B and Ni–B/GO coatings. Due to these interesting properties of the coating, it could be used as a protective material in the automotive and aerospace industries for parts of machines that were manipulated in high temperature and corrosive environments.


Coatings ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 253 ◽  
Author(s):  
Wei-Chun Chen ◽  
Chao-Te Lee ◽  
James Su ◽  
Hung-Pin Chen

Zirconium diboride (ZrB2) thin films were deposited on a Si(100) substrate using pulsed direct current (dc) magnetron sputtering and then annealed in high vacuum. In addition, we discussed the effects of the vacuum annealing temperature in the range of 750 to 870 °C with flowing N2 on the physical properties of ZrB2 films. The structural properties of ZrB2 films were investigated with X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The XRD patterns indicated that the ZrB2 films annealed at various temperatures exhibited a highly preferred orientation along the [0001] direction and that the residual stress could be relaxed by increasing the annealing temperature at 870 °C in a vacuum. The surface morphology was smooth, and the surface roughness slightly decreased with increasing annealing temperature. Cross-sectional TEM images of the ZrB2/Si(100) film annealed at 870 °C reveals the films were highly oriented in the direction of the c-axis of the Si substrate and the film structure was nearly stoichiometric in composition. The XPS results show the film surfaces slightly contain oxygen, which corresponds to the binding energy of Zr–O. Therefore, the obtained ZrB2 film seems to be quite suitable as a buffer layer for III-nitride growth.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Sheng-xue Yu ◽  
Rui-jun Zhang ◽  
Yong-fu Tang ◽  
Yan-ling Ma ◽  
Wen-chao Du

Nanostructured conversion coating of Al-Mg alloy was obtained via the surface treatment with zirconium titanium salt solution at 25°C for 10 min. The zirconium titanium salt solution is composed of tannic acid 1.00 g·L−1, K2ZrF60.75 g·L−1, NaF 1.25 g·L−1, MgSO41.0 g/L, and tetra-n-butyl titanate (TBT) 0.08 g·L−1. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectrum (FT-IR) were used to characterize the composition and structure of the obtained conversion coating. The morphology of the conversion coating was obtained by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Results exhibit that the zirconium titanium salt conversion coating of Al-Mg alloy contains Ti, Zr, Al, F, O, Mg, C, Na, and so on. The conversion coating with nm level thickness is smooth, uniform, and compact. Corrosion resistance of conversion coating was evaluated in the 3.5 wt.% NaCl electrolyte through polarization curves and electrochemical impedance spectrum (EIS). Self-corrosion current density on the nanostructured conversion coating of Al-Mg alloy is9.7×10-8A·cm-2, which is only 2% of that on the untreated aluminum-magnesium alloy. This result indicates that the corrosion resistance of the conversion coating is improved markedly after chemical conversion treatment.


2015 ◽  
Vol 1731 ◽  
Author(s):  
M. Baseer Haider ◽  
Mohammad F. Al-Kuhaili ◽  
S. M. A. Durrani ◽  
Venkatesh Singaravelu ◽  
Iman Roqan

ABSTRACTThin film Ti doped ZnO (Ti-ZnO) film were grown on sapphire (0001) substrate by RF and DC magnetron sputtering. Films were grown at a substrate temperature of 250 °C with different Ti/Zn concentration. Surface chemical study of the samples was performed by X-ray photoelectron spectroscopy to determine the stoichiometry and Ti/Zn ratio for all samples. Surface morphology of the samples were studied by atomic force microscopy. X-ray diffraction was carried out to determine the crystallinity of the film. No secondary phases of TixOy was observed. We observed a slight increase in the lattice constant with the increase in Ti concentration in ZnO. No ferromagnetic signal was observed for any of the samples. However, some samples showed super-paramagnetic phase.


2018 ◽  
Vol 778 ◽  
pp. 251-255
Author(s):  
Irfan Aziz ◽  
Qi Zhang

The present study investigates the effect of lanthanide chlorides conversion coatings on the corrosion response of the 2009 Al alloy and SiCp reinforced 2009 Al MMCs. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization studies showed that the localized corrosion resistance increased after treatments with solutions having various combinations of CeCl3.7H2O and LaCl3.7H2O, with maximum increase noticed for 5000ppm CeCl3.7H2O. It was found that the protection degree effect obtained under similar coating conditions for 25 vol.% SiCp/2009 Al was relatively higher than 15vol.% SiCp/ 2009 Al MMC, but both of them were less than that of the unreinforced alloy. Scanning electron microscopy (SEM) accompanied with energy dispersive spectroscopy (EDS) analysis revealed the deposition of Ce and/ or La oxides/ hydroxides on cathodic intermetallics/ SiCp and the existence of crevices at the SiCp/ matrix interfaces. X-ray photoelectron spectroscopy (XPS) results indicated that Ce was incorporated as Ce3+ and Ce4+ species in the coatings.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
N. Madaoui ◽  
L. Bait ◽  
K. Kheyar ◽  
N. Saoula

A reactive r.f magnetron sputtering method was used to deposit titanium dioxide coating on stainless steel substrates without intentional heating or biasing. The purpose of this work is given to study the argon-oxygen mixing gas on the corrosion behavior of TiO2 coatings. The morphology and structure of the coatings were studied by X-ray diffraction (XRD). Potentiodynamic polarization was used to study the corrosion behavior of the coatings. The results obtained from potentiodynamic polarization curves showed that TiO2 coatings possessed higher corrosion resistance than uncoated substrate.


2004 ◽  
Vol 19 (4) ◽  
pp. 352-355 ◽  
Author(s):  
Wei Tao Zheng ◽  
Xin Wang ◽  
Xianggui Kong ◽  
Hongwei Tian ◽  
Shansheng Yu ◽  
...  

Fe–N thin films were deposited on glass substrates by dc magnetron sputtering under various Ar∕N2 discharge conditions. Crystal structures and elemental compositions of the films were characterized by X-ray diffraction and X-ray photoelectron spectroscopy. Magnetic properties of the films were measured using a superconducting quantum interference device magnetometer. Films deposited at different N2∕(Ar+N2) flow ratios were found to have different crystal structures and different nitrogen contents. When the flow ratios were 60%, 50%, and 30%, a nonmagnetic single-phase FeN was formed in the films. At the flow ratio of 10%, two crystal phases of γ′-Fe4N and ε-Fe3N were detected. When the flow ratio reduced to 5%, a mixture of α-Fe, ε-Fe3N, FeN0.056, and α″-Fe16N2 phases was obtained. The value of saturation magnetization for the mixture was found to be larger than that of pure Fe.


Coatings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1064
Author(s):  
Lina Qin ◽  
Donglin Ma ◽  
Yantao Li ◽  
Peipei Jing ◽  
Bin Huang ◽  
...  

Titanium-copper (Ti–Cu) coatings have attracted extensive attention in the surface modification of industrial and biomedical materials due to their excellent physical and chemical properties and biocompatibility. Here, Ti–Cu coatings are fabricated using a combination of high-power pulsed magnetron sputtering (HPPMS; also known as high power impulse magnetron sputtering (HiPIMS)) and DC magnetron sputtering followed by vacuum annealing at varied temperatures (300, 400, and 500 °C). X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) data showed that Ti, Cu, and CuTi3 are mainly formed in the coatings before annealing, while Ti3O, Cu2O, and CuTi3 are the main compounds present in the annealed coatings. The cross-sectional TEM micrographs and corresponding EDS results provided evidence that Ti is mainly present on the surface and interfaces of the silicon substrate and the Ti–Cu coatings annealed at 500 °C, while the bulk of the coatings is enriched with Cu. The resistivity of the coatings decreased with increasing the annealing temperature from 300 to 500 °C. Based on self-corrosion current density data, the Ti–Cu coating annealed at 300 °C showed similar corrosion performance compared to the as-deposited Ti–Cu coating, while the corrosion rate increased for the Ti–Cu coatings annealed at 400 and 500 °C. Stable release of copper ions in PBS (cumulative released concentration of 0.8–1.0 μM) for up to 30 days was achieved for all the annealed coatings. Altogether, the results demonstrate that vacuum annealing is a simple and viable approach to tune the Cu diffusion and microstructure of the Ti–Cu coatings, thereby modulating their electrical resistivity, corrosion performance, and Cu ion release behavior.


Sign in / Sign up

Export Citation Format

Share Document