Physiological consequences of prolonged aerial exposure in the American eel,Anguilla rostrata: blood respiratory and acid-base status

1987 ◽  
Vol 157 (5) ◽  
pp. 635-642 ◽  
Author(s):  
D. A. Hyde ◽  
T. W. Moon ◽  
S. F. Perry
1987 ◽  
Vol 133 (1) ◽  
pp. 429-447 ◽  
Author(s):  
D. A. HYDE ◽  
S. F. PERRY

To whom reprint request should be addressed. The involvement of the gill and kidney in acid-base regulation was examined in the American eel, Anguilla rostrata, during 36h of continuous air-exposure and subsequent return to water. While in air, eels developed a severe mixed respiratory/- metabolic acidosis. Renal acid excretion increased only slightly during the latter stages of air-exposure. A pronounced reduction in urine flow rate was important to minimize dehydration but essentially eliminated the kidney as a route for excess acid excretion. Upon return to the water, eels had accrued an extracellular metabolic acid load of 9.53 mmol 1−1. The metabolic acid was cleared from the extracellular compartment at an exceptionally low rate (approximately 70μmol kg−1 h−1) and about 50 % of the acid load remained after 18 h of recovery in water. The clearance of metabolic acid was accounted for by enhanced branchial acid excretion which was related primarily to adjustments of unidirectional Na+ fluxes. Unidirectional Cl− fluxes were undetectable using radiotracer methods. We speculate that the inefficiency of acid-base regulation in the eel compared to other teleosts is, in part, related to the absence of significant branchial C1−/HCO3− exchange.


1981 ◽  
Vol 92 (1) ◽  
pp. 109-124
Author(s):  
E. W. TAYLOR ◽  
MICHÈLE G. WHEATLY

1. When first removed into air, crayfish showed transient increases in heart rate (fH) and scaphognathite rate (fR) which rapidly recovered to submerged levels and were unchanged for 24 h. The rate of O2 consumption(Moo2) increased from an initially low level and was then maintained for 24 h in air at the same level as in settled submerged animals. 2. There was an initial acidosis in the haemolymph which was both respiratory and metabolic due to the accumulation of CO2 and lactate. Progressive compensation by elevation of the levels of bicarbonate buffer in the haemolymph and reduction of circulating lactate levels returned pH towards submerged levels after 24 h in air. 3. Exposure to air resulted in a marked internal hypoxia with haemolymph O2, tensions, both postbranchial Pa, oo2 and prebranchial Pv, oo2, remaining low throughout the period of exposure. The oxygen content or the haemolymph was initially reduced, with a - vOO2 content difference close to zero. Within 24 h both Ca, oo2 and Cv, OO2 had returned towards their levels in submerged animals. These changes are explained by the Bohr shift on the haemocyanin consequent upon the measured pH changes. 4. After 48 h in air, MO2 and fH were significantly reduced and ventilation became intermittent. There was a slight secondary acidosis, increase in lactic acid levels and reduction in a - vO2 content difference in the haemolymph. 5. When crayfish were returned to water after 24 h in air, MOO2, fHfR were initially elevated by disturbance and there was a period of hyperventilation. In the haemolymph there was an initial slight alkalosis, and an increase in Ca, OO2 lactic acid. All variables returned to their settled submerged levels within 8 h.


1988 ◽  
Vol 134 (1) ◽  
pp. 409-422 ◽  
Author(s):  
R. TYLER-JONES ◽  
E. W. TAYLOR

Exposure of the crayfish Austropotamobius pallipes to air resulted in an acidosis in the postbranchial haemolymph (pHa) and the abdominal muscle. The haemolymph acidosis was subsequently compensated and, after 24 h in air, pHa had returned to the settled, submerged value. The intracellular acidosis remained uncompensated throughout the period of aerial exposure. When crayfish were first removed into air, lactate concentrations in the haemolymph and abdominal muscle increased substantially. After 24 h in air lactate concentrations in both compartments had returned towards submerged levels. Possibilities for the fate of lactate are discussed. Re-analysis of haemolymph acid-base data for crayfish exposed to air (Taylor & Wheatly, 1981) revealed discrepancies between observed and expected base excess. Initially these may arise from exchanges of H+ or HCO3− with other compartments. During long-term air exposure, the removal of lactate from the haemolymph and an independent accumulation of base, probably from the mobilization of an internal source of bicarbonate buffer, result in the observed pH compensation. Determination of base excess for the changes in abdominal muscle acid-base status after 3 h of exposure to air corroborated the results of the haemolymph analysis, suggesting a retention of H+ despite the efflux of lactate.


2014 ◽  
Vol 1 (2) ◽  
pp. 143-147
Author(s):  
Md. Ansar Ali ◽  
Kaniz Hasina ◽  
Shahnoor Islam ◽  
Md. Ashraf Ul Huq ◽  
Md. Mahbub-Ul Alam ◽  
...  

Background: Different treatment modalities and procedures have been tried for the management of infantile hypertrophic pyloric stenosis. But surgery remains the mainstay for management of IHPS. Ramstedt’s pyloromyotomy was described almost over a hundred years ago and to date remains the surgical technique of choice. An alternative and better technique is the double-Y pyloromyotomy, which offer better results for management of this common condition.Methods: A prospective comparative interventional study of 40 patients with IHPS was carried out over a period of 2 years from July 2008 to July 2010. The patients were divided into 2 equal groups of 20 patients in each. The study was designed that all patients selected for study were optimized preoperatively regarding to hydration, acid-base status and electrolytes imbalance. All surgeries were performed after obtaining informed consent. Standard preoperative preparation and postoperative feeding regimes were used. The patients were operated on an alternate basis, i.e., one patient by Double-Y Pyloromyotomy(DY) and the next by aRamstedt’s Pyloromyotomy (RP). Data on patient demographics, operative time, anesthesia complications, postoperative complications including vomiting and weight gain were collected. Patients were followed up for a period of 3 months postoperatively. Statistical assessments were done by using t test.Results: From July 2008 through July 2010, fourty patients were finally analyzed for this study. Any statistical differences were observed in patient population regarding age, sex, weight at presentation, symptoms and clinical condition including electrolytes imbalance and acid-base status were recorded. Significant differences were found in postoperative vomiting and weight gain. Data of post operative vomiting and weight gain in both groups were collected. Vomiting in double-Y(DY) pyloromyotomy group (1.21 ± 0.45days) vs Ramstedt’s pyloromyotomy (RP) group(3.03 ± 0.37days) p= 0.0001.Weight gain after 1st 10 days DY vs RP is ( 298 ± 57.94 gm vs193±19.8 gm p=0.0014), after 1 month (676.67±149.84 gm vs 466.67 ± 127.71 gm, p=0.0001), after 2months (741.33± 278.74 gm vs 490±80.62 gm, p=0.002) and after 3 months (582±36.01gm vs 453.33±51.64 gm, p=0.0001).No long-term complications were reported and no re-do yloromyotomy was needed.Conclusion: The double-Y pyloromyotomy seems to be a better technique for the surgical management of IHPS. It may offer a better functional outcome in term of postoperative vomiting and weight gain.DOI: http://dx.doi.org/10.3329/jpsb.v1i2.19532


Author(s):  
Ivar Gøthgen ◽  
Ole Siggaard-Andersen ◽  
Jens Rasmussen ◽  
Peter Wimberley ◽  
Niels Fogh. Andersen

Sign in / Sign up

Export Citation Format

Share Document