Effect of environmental temperature on a small-scale biodegradation system for organic solid waste

2001 ◽  
Vol 47 (2) ◽  
pp. 154-158 ◽  
Author(s):  
Sakae Horisawa ◽  
Yoh Sakuma ◽  
Yutaka Tamai ◽  
Shuichi Doi ◽  
Minoru Terazawa
Detritus ◽  
2020 ◽  
pp. 3-10
Author(s):  
Roberto Guião de Souza Lima Jr. ◽  
Claudio Fernando Mahler

This study involves the evaluation of new composting systems for the treatment of organic solid waste that has low environmental impact. Two composting devices were developed, with four types of management. Their behavior was analyzed regarding temperature, gas production, moisture, leachate and percolated water production, compost maturation, nutrient presence, pH and water heating, which can be seen as an energy gain in addition to the economic viability of the process. The proposed composting techniques kept the waste at thermophilic temperatures for more than 20 days, with no significant emission of CH4, under aerobic conditions by passive aeration, without leachate generation. These results can be partially attributed to the suspension of the compost on pallets, the residue composition chosen in the experiments and the boundary conditions of the compartments. The energy recovery test, through water recirculation inside the compost, presented temperatures that reached 51°C after 24 h of recirculation, and were maintained throughout the process, 20 days, demonstrating its effectiveness. The proposed models are environmentally viable, minimizing gas emissions and leachate generation compared to landfill or industrial composting plants. They can be used in industrial kitchens, residential complexes, shopping malls and other small and medium solid waste generators. In addition, the solution presented in this study avoids the transportation of waste over medium and long distances, which also brings a significant reduction in energy expenses, and in the case of landfills, it avoids occupation for long periods, thus reducing emissions of gases and leachate, whose control and treatment are expensive.


2000 ◽  
Vol 46 (4) ◽  
pp. 317-321 ◽  
Author(s):  
Sakae Horisawa ◽  
Yutaka Tamai ◽  
Yoh Sakuma ◽  
Shuichi Doi ◽  
Minoru Terazawa

2000 ◽  
Vol 126 (12) ◽  
pp. 1076-1081 ◽  
Author(s):  
Adrie Veeken ◽  
Sergey Kalyuzhnyi ◽  
Heijo Scharff ◽  
Bert Hamelers

2020 ◽  
Vol 6 (6) ◽  
pp. 678-687
Author(s):  
Godofredo Román Lobato Calderón ◽  
Pascual Guevara Yanqui ◽  
Miguel Ángel Ramírez Arellano

In the present investigation, the weight, growth, adaptability and production of humus of a calf foot of Californian red worm (Eisenia foetida) fed with compost (made from animal excreta and organic waste) and organic remains were evaluated. The evaluation was carried out in Tarma, Junín Region. A breeding ground was built with 3.2 m3 cement bricks (6.10 m long  1.05 m wide and 0.50 m high); with a 5 cm thick screed with a 2” PVC drain pipe with a west-east slope, raised by the west side at 15°. A population of 10,000 individuals (10 kilograms) was sown, a sample of 370 individuals was extracted by applying a Simple Random Sampling (MAS) whose average weight and length was 0.3 g and 30 mm. they were fed for 3 months (90 days), the calf was divided into 21 sampling points from which 383 worms were weighed and measured whose average weight and length were 0.38 g and 33.24 mm (3.32 cm). Data were taken every day at 2:00 pm, hydrogen potential (pH) and humidity (soil peach meter), substrate temperature (digital thermometer), ambient temperature (thermohygrometer) were recorded. The average weight of the worms varied from 0.30-0.38 g, the average length varied from 30-33.24 mm. The presence of tiny heels and worms demonstrated their adaptability. The production of humus was 3 tons, the efficiency of the breeding stock was 93.75%. The final substrate had an average of 6.72 pH, 13.61°C temperature, 69.86% humidity and 19.5°C ambient temperature. Consequently, vermicompost is an alternative in the treatment of organic solid waste to be developed in high Andean areas.


Sign in / Sign up

Export Citation Format

Share Document