Tissue cell changes in human lymphatic gland explantates

1959 ◽  
Vol 47 (1) ◽  
pp. 76-82 ◽  
Author(s):  
N. M. Chistova
Author(s):  
R.V.W. Dimlich ◽  
M.H. Biros

In severe cerebral ischemia, Purkinje cells of the cerebellum are one of the cell types most vulnerable to anoxic damage. In the partial (forebrain) global ischemic (PGI) model of the rat, Paljärvi noted at the light microscopic level that cerebellar damage is inconsistant and when present, milder than in the telencephalon, diencephalon and rostral brain stem. Cerebellar injury was observed in 3 of 4 PGI rats following 5 minutes of reperfusion but in none of the rats after 90 min of reperfusion. To evaluate a time between these two extremes (5 and 90 min), the present investigation used the PGI model to study the effects of ischemia on the ultrastructure of cerebellar Purkinje cells in rats that were sacrificed after 30 min of reperfusion. This time also was chosen because lactic acid that is thought to contribute to ischemic cell changes in PGI is at a maximum after 30 min of reperfusion.


Author(s):  
Cesar D. Fermin ◽  
Hans-Peter Zenner

Contraction of outer and inner hair cells (OHC&IHC) in the Organ of Corti (OC) of the inner ear is necessary for sound transduction. Getting at HC in vivo preparations is difficult. Thus, isolated HCs have been used to study OHC properties. Even though viability has been shown in isolated (iOHC) preparations by good responses to current and cationic stimulation, the contribution of adjoining cells can not be explained with iOHC preparations. This study was undertaken to examine changes in the OHC after expossure of the OHC to high concentrations of potassium (K) and sodium (Na), by carefully immersing the OC in either artifical endolymph or perilymph. After K and Na exposure, OCs were fixed with 3% glutaraldehyde, post-fixed in osmium, separated into base, middle and apex and embedded in Araldite™. One μm thick sections were prepared for analysis with the light and E.M. Cross sectional areas were measured with Bioquant™ software.Potassium and sodium both cause isolated guinea pig OHC to contract. In vivo high K concentration may cause uncontrolled and sustained contractions that could contribute to Meniere's disease. The behavior of OHC in the vivo setting might be very different from that of iOHC. We show here changes of the cell cytosol and cisterns caused by K and Na to OHC in situs. The table below shows results from cross sectional area measurements of OHC from OC that were exposed to either K or Na. As one would expect, from the anatomical arrangement of the OC, OHC#l that are supported by rigid tissue would probably be displaced (move) less than those OHC located away from the pillar. Surprisingly, cells in the middle turn of the cochlea changed their surface areas more than those at either end of the cochlea. Moreover, changes in surface area do not seem to differ between K and Na treated OCs.


Author(s):  
Badrinath Roysam ◽  
Hakan Ancin ◽  
Douglas E. Becker ◽  
Robert W. Mackin ◽  
Matthew M. Chestnut ◽  
...  

This paper summarizes recent advances made by this group in the automated three-dimensional (3-D) image analysis of cytological specimens that are much thicker than the depth of field, and much wider than the field of view of the microscope. The imaging of thick samples is motivated by the need to sample large volumes of tissue rapidly, make more accurate measurements than possible with 2-D sampling, and also to perform analysis in a manner that preserves the relative locations and 3-D structures of the cells. The motivation to study specimens much wider than the field of view arises when measurements and insights at the tissue, rather than the cell level are needed.The term “analysis” indicates a activities ranging from cell counting, neuron tracing, cell morphometry, measurement of tracers, through characterization of large populations of cells with regard to higher-level tissue organization by detecting patterns such as 3-D spatial clustering, the presence of subpopulations, and their relationships to each other. Of even more interest are changes in these parameters as a function of development, and as a reaction to external stimuli. There is a widespread need to measure structural changes in tissue caused by toxins, physiologic states, biochemicals, aging, development, and electrochemical or physical stimuli. These agents could affect the number of cells per unit volume of tissue, cell volume and shape, and cause structural changes in individual cells, inter-connections, or subtle changes in higher-level tissue architecture. It is important to process large intact volumes of tissue to achieve adequate sampling and sensitivity to subtle changes. It is desirable to perform such studies rapidly, with utmost automation, and at minimal cost. Automated 3-D image analysis methods offer unique advantages and opportunities, without making simplifying assumptions of tissue uniformity, unlike random sampling methods such as stereology.12 Although stereological methods are known to be statistically unbiased, they may not be statistically efficient. Another disadvantage of sampling methods is the lack of full visual confirmation - an attractive feature of image analysis based methods.


Author(s):  
Carol Allen

When provided with a suitable solid substrate, tissue cells undergo a rapid conversion from the spherical form expressed in suspension culture to a characteristic flattened morphology. As a result of this conversion, called cell spreading, the cell nucleus and organelles come to occupy a central region of “deep cytoplasm” which slopes steeply into a peripheral “lamellar” region less than 1 pm thick at its outer edge and generally free of cell organelles. Cell spreading is accomplished by a continuous outward repositioning of the lamellar margins. Cell translocation on the substrate results when the activity of the lamellae on one side of the cell become dominant. When this occurs, the cell is “polarized” and moves in the direction of the “leading lamellae”. Careful analysis of tissue cell locomotion by time-lapse microphotography (1) has shown that the deformational movements of the leading lamellae occur in a repeating cycle of advance and retreat in the direction of cell movement and that the rate of such deformations are positively correlated with the speed of cell movement. In the present study, the physical basis for these movements of the cell margin has been examined by comparative light microscopy of living cells with whole-mount electron microscopy of fixed cells. Ultrastructural observations were made on tissue cells grown on Formvar-coated grids, fixed with glutaraldehyde, further processed by critical-point drying, and then photographed in the High Voltage Electron Microscope. This processing and imaging system maintains the 3-dimensional organization of the whole cell, the relationship of the cell to the substrate, and affords a large sample size which facilitates quantitative analysis. Comparative analysis of film records of living cells with the whole-cell micrographs revealed that specific patterns of microfilament organization consistently accompany recognizable stages of lamellar formation and movement. The margins of spreading cells and the leading lamellae of locomoting cells showed a similar pattern of MF repositionings (Figs. 1-4). These results will be discussed in terms of a working model for the mechanics of lamellar motility which includes the following major features: (a) lamellar protrusion results when an intracellular force is exerted at a locally weak area of the cell periphery; (b) the association of cortical MFs with one another determines the local resistance to this force; (c) where MF-to-MF association is weak, the cell periphery expands and some cortical MFs are dragged passively forward; (d) contact of the expanded area with the substrate then triggers the lateral association and reorientation of these cortical MFs into MF bundles parallel to the direction of the expansion; and (e) an active interaction between these MF bundles associated with the cortex of the expanded lamellae and the cortical MFs which remained in the sub-lamellar region then pulls the latter MFs forward toward the expanded area. Thus, the advance of the cell periphery on the substrate occurs in two stages: a passive phase in which some cortical MFs are dragged outward by the force acting to expand the cell periphery, and an active phase in which additional cortical MFs are pulled forward by interaction with the first set. Subsequent interactions between peripheral microfilament bundles and filaments in the deeper cytoplasm could then transmit the advance gained by lamellar expansion to the bulk of the cytoplasm.


2021 ◽  
Vol 22 (12) ◽  
pp. 6394
Author(s):  
Jacob Spinnen ◽  
Lennard K. Shopperly ◽  
Carsten Rendenbach ◽  
Anja A. Kühl ◽  
Ufuk Sentürk ◽  
...  

For in vitro modeling of human joints, osteochondral explants represent an acceptable compromise between conventional cell culture and animal models. However, the scarcity of native human joint tissue poses a challenge for experiments requiring high numbers of samples and makes the method rather unsuitable for toxicity analyses and dosing studies. To scale their application, we developed a novel method that allows the preparation of up to 100 explant cultures from a single human sample with a simple setup. Explants were cultured for 21 days, stimulated with TNF-α or TGF-β3, and analyzed for cell viability, gene expression and histological changes. Tissue cell viability remained stable at >90% for three weeks. Proteoglycan levels and gene expression of COL2A1, ACAN and COMP were maintained for 14 days before decreasing. TNF-α and TGF-β3 caused dose-dependent changes in cartilage marker gene expression as early as 7 days. Histologically, cultures under TNF-α stimulation showed a 32% reduction in proteoglycans, detachment of collagen fibers and cell swelling after 7 days. In conclusion, thin osteochondral slice cultures behaved analogously to conventional punch explants despite cell stress exerted during fabrication. In pharmacological testing, both the shorter diffusion distance and the lack of need for serum in the culture suggest a positive effect on sensitivity. The ease of fabrication and the scalability of the sample number make this manufacturing method a promising platform for large-scale preclinical testing in joint research.


Rechtsmedizin ◽  
2021 ◽  
Author(s):  
Jana Naue ◽  
Julia Winkelmann ◽  
Ulrike Schmidt ◽  
Sabine Lutz-Bonengel

AbstractThe analysis of age-dependent DNA methylation changes is a valuable tool in epigenetic research and forensic genetics. With some exceptions, most studies in the past concentrated on the analysis of blood, buccal, and saliva samples. Another important sample type in forensic investigations is hair, where age-dependent DNA methylation has not been investigated so far. In this pilot study a deeper look was taken at the possibilities and challenges of DNA methylation analysis in hair. The DNA methylation of selected age-dependent 5’-C-phosphate-G‑3’ (CpG) sites were characterized for their potential use as a biomarker for age prediction using plucked hair samples and massive parallel sequencing. Plucked hair roots of 49 individuals were included in the study. The DNA methylation of 31 hairs was successfully analyzed. The DNA methylation pattern of 10 loci, including ELOVL2, F5, KLF14, and TRIM59, was determined by amplicon-based massive parallel sequencing. Age-dependent changes were found for several markers. The results demonstrate the possible use of already established age-dependent markers but at the same time they have tissue/cell type-specific characteristics. Special challenges such as low amounts of DNA and degraded DNA as well as the possible heterogeneous cellular composition of plucked hair samples, have to be considered.


Sign in / Sign up

Export Citation Format

Share Document