Slow motion of a viscous conducting fluid past ellipsoids in the presence of a toroidal magnetic field

1970 ◽  
Vol 81 (1) ◽  
pp. 216-222
Author(s):  
S. Ghoshal
Author(s):  
D. W. Allan ◽  
E. C. Bullard

AbstractThe magnetic field observable outside a body of conducting fluid in which field is imbedded may be considerably altered by convection currents in the fluid. One possible explanation of the geomagnetic secular variation foci is that localized convection cells in the earth's core disturb the main field present. An analytic solution for such a process is readily obtained by assuming the form and dimensions for such a cell, and shows that the magnitude of the secular variation cannot easily be explained on these lines without the presence of a subsurface toroidal magnetic field of some hundreds of gauss which is ‘convected through’ the surface of the core.


2021 ◽  
Vol 47 (9) ◽  
pp. 912-937
Author(s):  
V. I. Krauz ◽  
K. N. Mitrofanov ◽  
V. V. Myalton ◽  
I. V. Il’ichev ◽  
A. M. Kharrasov ◽  
...  

2003 ◽  
Vol 585 (2) ◽  
pp. 1124-1137 ◽  
Author(s):  
Keke Zhang ◽  
Xinhao Liao ◽  
Gerald Schubert

1977 ◽  
Vol 16 (3) ◽  
pp. 491-496 ◽  
Author(s):  
Akihiro Mohri ◽  
Kazunari Ikuta ◽  
Junji Fujita

1979 ◽  
Vol 46 (1) ◽  
pp. 151-155 ◽  
Author(s):  
F. C. Moon

Experimental evidence and a theoretical model are presented for the magnetoelastic buckling of a rigid superconducting ring in a steady circumferential (toroidal)magnetic field. The theoretical model predicts a coupled translation and pitch displacement of the coil in the buckled mode. A discussion is given of both the linear and nonlinear magnetic perturbation forces. The experiments were conducted in liquid helium (4.2°K). The lowest natural frequency of the rigid coil on elastic springs was observed to decrease near the buckling current. Agreement between theory and experiment is fair. These results may have design implications for poloidal field coils in magnetic fusion Tokamak reactors.


2016 ◽  
Vol 21 (3) ◽  
pp. 667-681 ◽  
Author(s):  
K.D. Singh

Abstract An unsteady mixed convection flow of a visco-elastic, incompressible and electrically conducting fluid in a hot vertical channel is analyzed. The vertical channel is filled with a porous medium. The temperature of one of the channel plates is considered to be fluctuating span-wise cosinusoidally, i.e., $T^* \left( {y^* ,z^* ,t^* } \right) = T_1 + \left( {T_2} - {T_ 1} \right)\cos \left( {{{\pi z^* } \over d} - \omega ^* t^* } \right)$ . A magnetic field of uniform strength is applied perpendicular to the planes of the plates. The magnetic Reynolds number is assumed very small so that the induced magnetic field is neglected. It is also assumed that the conducting fluid is gray, absorbing/emitting radiation and non-scattering. Governing equations are solved exactly for the velocity and the temperature fields. The effects of various flow parameters on the velocity, temperature and the skin friction and the Nusselt number in terms of their amplitudes and phase angles are discussed with the help of figures.


Sign in / Sign up

Export Citation Format

Share Document