Use of the duffing model in the dynamical analysis of oscillatory systems

1975 ◽  
Vol 11 (3) ◽  
pp. 332-335
Author(s):  
N. P. Plakhtienko
Author(s):  
Luciano Carotenuto ◽  
Vincenza Pace ◽  
Dina Bellizzi ◽  
Giovanna De Benedictis

Author(s):  
YK Wu ◽  
JL Mo ◽  
B Tang ◽  
JW Xu ◽  
B Huang ◽  
...  

In this research, the tribological and dynamical characteristics of a brake pad with multiple blocks are investigated using experimental and numerical methods. A dynamometer with a multiblock brake pad configuration on a brake disc is developed and a series of drag-type tests are conducted to study the brake squeal and wear behavior of a high-speed train brake system. Finite element analysis is performed to derive physical explanations for the observed experimental phenomena. The experimental and numerical results show that the rotational speed and braking force have important influences on the brake squeal; the trends of the multiblock and single-block systems are different. In the multiblock brake pad, the different blocks exhibit significantly different magnitudes of contact stresses and vibration accelerations. The blocks located in the inner and outer rings have higher vibration acceleration amplitudes and stronger vibration energies than the blocks located in the middle ring.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 876
Author(s):  
Wieslaw Marszalek ◽  
Jan Sadecki ◽  
Maciej Walczak

Two types of bifurcation diagrams of cytosolic calcium nonlinear oscillatory systems are presented in rectangular areas determined by two slowly varying parameters. Verification of the periodic dynamics in the two-parameter areas requires solving the underlying model a few hundred thousand or a few million times, depending on the assumed resolution of the desired diagrams (color bifurcation figures). One type of diagram shows period-n oscillations, that is, periodic oscillations having n maximum values in one period. The second type of diagram shows frequency distributions in the rectangular areas. Each of those types of diagrams gives different information regarding the analyzed autonomous systems and they complement each other. In some parts of the considered rectangular areas, the analyzed systems may exhibit non-periodic steady-state solutions, i.e., constant (equilibrium points), oscillatory chaotic or unstable solutions. The identification process distinguishes the later types from the former one (periodic). Our bifurcation diagrams complement other possible two-parameter diagrams one may create for the same autonomous systems, for example, the diagrams of Lyapunov exponents, Ls diagrams for mixed-mode oscillations or the 0–1 test for chaos and sample entropy diagrams. Computing our two-parameter bifurcation diagrams in practice and determining the areas of periodicity is based on using an appropriate numerical solver of the underlying mathematical model (system of differential equations) with an adaptive (or constant) step-size of integration, using parallel computations. The case presented in this paper is illustrated by the diagrams for an autonomous dynamical model for cytosolic calcium oscillations, an interesting nonlinear model with three dynamical variables, sixteen parameters and various nonlinear terms of polynomial and rational types. The identified frequency of oscillations may increase or decrease a few hundred times within the assumed range of parameters, which is a rather unusual property. Such a dynamical model of cytosolic calcium oscillations, with mitochondria included, is an important model in which control of the basic functions of cells is achieved through the Ca2+ signal regulation.


Author(s):  
Cuong Truong Ngoc ◽  
Xiao Xu ◽  
Hwan-Seong Kim ◽  
Duy Anh Nguyen ◽  
Sam-Sang You

This paper deals with three-dimensional (3D) model of competitive Lotka-Volterra equation to investigate nonlinear dynamics and control strategy of container terminal throughput and capacity. Dynamical behaviors are intensely explored by using eigenvalue evaluation, bifurcation analysis, and time-series data. The dynamical analysis is to show the stability with bifurcation of the competition and collaboration of multiple container terminals in the maritime transportation. Based on the chaotic analysis, the sliding mode control theory has been utilized for optimization of port operations under disruptions. Extensive numerical simulations have been conducted to validate the efficacy and reliability of the presented control algorithms. Particularly, the closed-loop system has been assessed through chaotic suppression and synchronization strategies for port management. Finally, the presented fundamental techniques can be utilized to provide managerial insights and solutions on efficient seaport operations that allow more timely and cost-effective decision making for port authorities in such a highly competitive environment.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 929
Author(s):  
Guiyun Liu ◽  
Jieyong Chen ◽  
Zhongwei Liang ◽  
Zhimin Peng ◽  
Junqiang Li

With the rapid development of science and technology, the application of wireless sensor networks (WSNs) is more and more widely. It has been widely concerned by scholars. Viruses are one of the main threats to WSNs. In this paper, based on the principle of epidemic dynamics, we build a SEIR propagation model with the mutated virus in WSNs, where E nodes are infectious and cannot be repaired to S nodes or R nodes. Subsequently, the basic reproduction number R0, the local stability and global stability of the system are analyzed. The cost function and Hamiltonian function are constructed by taking the repair ratio of infected nodes and the repair ratio of mutated infected nodes as optimization control variables. Based on the Pontryagin maximum principle, an optimal control strategy is designed to effectively control the spread of the virus and minimize the total cost. The simulation results show that the model has a guiding significance to curb the spread of mutated virus in WSNs.


Sign in / Sign up

Export Citation Format

Share Document