Optimal simplex tableau characterization of unique and bounded solutions of linear programs

1981 ◽  
Vol 35 (1) ◽  
pp. 123-128 ◽  
Author(s):  
O. L. Mangasarian
Author(s):  
Luis Barreira ◽  
Davor Dragičević ◽  
Claudia Valls

For a dynamics on the whole line, for both discrete and continuous time, we extend a result of Pliss that gives a characterization of the notion of a trichotomy in various directions. More precisely, the result gives a characterization in terms of an admissibility property in the whole line (namely, the existence of bounded solutions of a linear dynamics under any nonlinear bounded perturbation) of the existence of a trichotomy, i.e. of exponential dichotomies in the future and in the past, together with a certain transversality condition at time zero. In particular, we consider arbitrary linear operators acting on a Banach space as well as sequences of norms instead of a single norm, which allows us to consider the general case of non-uniform exponential behaviour.


2013 ◽  
Vol 15 (04) ◽  
pp. 1340033
Author(s):  
I. JEYARAMAN ◽  
K. C. SIVAKUMAR ◽  
V. VETRIVEL

In this paper, using Moore–Penrose inverse, we characterize the feasibility of primal and dual Stein linear programs over symmetric cones in a Euclidean Jordan algebra V. We give sufficient conditions for the solvability of the Stein linear programming problem. Further, we give a characterization of the globally uniquely solvable property for the Stein transformation in terms of a least element of a set in V in the context of the linear complementarity problem.


2010 ◽  
Vol 20 (09) ◽  
pp. 2751-2760 ◽  
Author(s):  
TOMÁS CARABALLO ◽  
JOSÉ A. LANGA ◽  
FELIPE RIVERO ◽  
ALEXANDRE N. CARVALHO

In this paper we consider a dissipative damped wave equation with nonautonomous damping of the form [Formula: see text] in a bounded smooth domain Ω ⊂ ℝn with Dirichlet boundary conditions, where f is a dissipative smooth nonlinearity and the damping β : ℝ → (0, ∞) is a suitable function. We prove, if (1) has finitely many equilibria, that all global bounded solutions of (1) are backwards and forwards asymptotic to equilibria. Thus, we give a class of examples of nonautonomous evolution processes for which the structure of the pullback attractors is well understood. That complements the results of [Carvalho & Langa, 2009] on characterization of attractors, where it was shown that a small nonautonomous perturbation of an autonomous gradient-like evolution process is also gradient-like. Note that the evolution process associated to (1) is not a small nonautonomous perturbation of any autonomous gradient-like evolution processes. Moreover, we are also able to prove that the pullback attractor for (1) is also a forwards attractor and that the rate of attraction is exponential.


Author(s):  
B. L. Soloff ◽  
T. A. Rado

Mycobacteriophage R1 was originally isolated from a lysogenic culture of M. butyricum. The virus was propagated on a leucine-requiring derivative of M. smegmatis, 607 leu−, isolated by nitrosoguanidine mutagenesis of typestrain ATCC 607. Growth was accomplished in a minimal medium containing glycerol and glucose as carbon source and enriched by the addition of 80 μg/ ml L-leucine. Bacteria in early logarithmic growth phase were infected with virus at a multiplicity of 5, and incubated with aeration for 8 hours. The partially lysed suspension was diluted 1:10 in growth medium and incubated for a further 8 hours. This permitted stationary phase cells to re-enter logarithmic growth and resulted in complete lysis of the culture.


Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


Author(s):  
B. H. Kear ◽  
J. M. Oblak

A nickel-base superalloy is essentially a Ni/Cr solid solution hardened by additions of Al (Ti, Nb, etc.) to precipitate a coherent, ordered phase. In most commercial alloy systems, e.g. B-1900, IN-100 and Mar-M200, the stable precipitate is Ni3 (Al,Ti) γ′, with an LI2structure. In A lloy 901 the normal precipitate is metastable Nis Ti3 γ′ ; the stable phase is a hexagonal Do2 4 structure. In Alloy 718 the strengthening precipitate is metastable γ″, which has a body-centered tetragonal D022 structure.Precipitate MorphologyIn most systems the ordered γ′ phase forms by a continuous precipitation re-action, which gives rise to a uniform intragranular dispersion of precipitate particles. For zero γ/γ′ misfit, the γ′ precipitates assume a spheroidal.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Sign in / Sign up

Export Citation Format

Share Document