Effect of methyl iodide in synthesis of phenyl isocyanate by carbonylation of nitrobenzene in presence of PdCl2-pyridine catalyst

Author(s):  
V. I. Manov-Yuvenskii ◽  
B. K. Nefedov
1971 ◽  
Vol 49 (11) ◽  
pp. 1792-1798 ◽  
Author(s):  
R. Raap

At room temperature 1,4-diphenyl-1,2,3-triazolyllithium rapidly undergoes fragmentation to nitrogen and lithium (N-phenyl)phenylketenimine anion 8c, [Formula: see text]. Some of the reactions of this ambident anion have been studied. Reaction of 8c with methyl iodide results in C-methylation to a mixture of (N-phenyl)methylphenylketenimine and 3-methyl-1,3-diphenyl-4-(2′-phenylethylene)-2-phenyliminoazetidine. A six-membered heterocyclic compound, 6-anilino-1,3,5-triphenyluracil, results from the reaction between 8c and phenyl isocyanate. With dimethyl sulfate and methyl chloroformate N-alkylation and N-acylation takes place predominantly, forming N-methyl-N-phenyl-2-phenylethynylamine and N-carbomethoxy-N-phenyl-2-phenylethynylamine respectively. Reaction of 8c with methanol and ethanethiol gives an iminoester and an iminothioester respectively.1-Phenyl-1,2,3-triazolyllithium and 4-methyl-1-phenyl-1,2,3-triazolyllithium undergo fragmentation at somewhat higher temperatures.


2021 ◽  
Author(s):  
◽  
Struan Cummins

<p>This thesis describes the synthesis, structures and reactivities of gallium and aluminium complexes supported by β-diketiminato ligands ([CR{C(R)N(R’)}₂]-, abbrev. [(BDIR’)]-).  Chapter 1 gives a general introduction into the trends and properties that distinguish the heavier p-block elements from their lighter counterparts. An introduction into the theory of multiple bond formation, both homonuclear and heteronuclear, in the heavy p-block elements is provided and a summary of the sterically demanding ligands required to stabilise these complexes is introduced. The β-diketiminato ligand framework utilised in this study is introduced and the methods of generation of low valent gallium and aluminium complexes supported by the BDIDIPP ligand are discussed.  Chapter 2 discusses the reactivity of the complex BDIDIPPGa with diazo- compounds in the quest to isolate a complex with a formal gallium-carbon double bond. BDIDIPPGa reacts with two equivalents of both trimethylsilyldiazomethane and diazofluorene, presumably through the target gallium-carbon double bond intermediate. No reaction is observed with di-tert-butyldiazomethane, while BDIDIPPGa catalyses the decomposition of diphenyldiazomethane into tetraphenylethene. Three new β-diketiminato gallium(I) complexes were synthesised: ArBDIDIPPGa, BDIAr*Ga and BDIAr’Ga. ArBDIDIPPGa also reacted with two equivalents of trimethylsilyldiazomethane, presumably through the target gallium-carbon double bond intermediate. BDIAr*Ga and BDIAr’Ga both inserted into the C-H bond of trimethylsilyldiazomethane to give BDIAr*Ga(H)C(N2)SiMe₃ and BDIAr’Ga(H)C(N2)SiMe₃ respectively. Upon addition of diazofluorene to BDIAr*Ga, one of the aromatic protons of the BDIAr* ligand was abstracted by the diazofluorene, resulting in coordination of one of the flanking phenyl groups to the gallium centre.  Chapter 3 discusses an investigation into the formation of formal double bonds between aluminium and phosphorus, and gallium and phosphorus. The proposed ‘deprotonation/elimination’ method, reacting BDIDIPPM(PHAr)Cl (M = Al, Ga Ar = Ph, Mes) with nBuLi, resulted in the formation of intractable mixtures of products. Direct synthesis by the addition of MesPLi₂ to BDIDIPPMCl₂ (M = Al, Ga) resulted in the formation of BDIDIPPM(PHMes)Cl (M = Al, Ga). Changing the elimination product to TMS-Cl, through the synthesis of BDIDIPPM(P(TMS)Ph)Cl (M = Al, Ga), resulted in the synthesis of BDIDIPPAl(P(TMS)Ph)Cl, which showed no signs of elimination occurring upon heating to 110 °C. BDIDIPPGa(P(TMS)Ph)Cl could not be isolated, potentially as the complex was undergoing the desired elimination of TMS-Cl, but the resulting complex was decomposing. Changing the elimination product to ethane, through the synthesis of BDIDIPPAl(PHMes)Et, resulted in no sign of elimination occurring upon heating to 110 °C. Reduction of BDIDIPPMCl₂ (M = Al, Ga) in the presence of bistrimethylsilylacetylene, as part of the synthesis of BDIDIPPMLi₂ (M = Al, Ga) salts, was unsuccessful, as was the reaction of BDIDIPPGa with bistrimethylsilylacetylene. Reduction of MesPCl₂ with potassium metal in the presence of BDIDIPPGa resulted in an intractable mixture of products, reduction with magnesium resulted in the formation of (MesP)₃ and (MesP)₄. Addition of MesPH₂ to BDIDIPPGa resulted in the formation of BDIDIPPGa(H)P(H)Mes, which did not undergo H₂ elimination at 110 °C. The synthesis of BDIDIPPAl was unsuccessful as the product could not be isolated cleanly. The synthesis of ArBDIDIPPAl resulted in the intramolecular rearrangement of the ligand to give a five-membered aluminium containing ring. The synthesis of BDIAr*Al stalled at the formation of BDIAr*Al(Me)I due to the steric bulk of the ligand blocking the second substitution of iodine from occurring.  Chapter 4 discusses the reactivity of the primary phosphanide complexes BDIDIPPAl(PHMes)Cl, BDIDIPPAl(PHMes)Et and BDIDIPPGa(H)P(H)Mes with phenyl acetylene, 4-nitro-phenyl isocyanate, phenyl isothiocyanate, dicyclohexyl carbodiimide, cyclohexene, benzophenone, benzaldehyde, selenium, sulfur, and methyl iodide. Reactivity was not observed for phenyl acetylene, dicyclohexyl carbodiimide or benzophenone with any of the phosphanides. Reactivity with the phosphanides was observed with cyclohexene, however rapid decomposition of the products occurred and they were unable to be identified. BDIDIPPAl(PHMes)Cl and BDIDIPPGa(H)P(H)Mes showed no reactivity with benzaldehyde, however, the ethyl ligand of BDIDIPPAl(PHMes)Et reacted with the aldehyde proton, eliminating ethane and substituting the PhC(O)- ligand onto the aluminium centre. Reactivity with the phosphanides was observed with both sulfur and selenium, however multiple different products were formed, none of which were successfully isolated. Reactivity between the phosphanides and methyl iodide was observed, with the P-M bond appearing to be cleaved and formation of a M-I bond occurring. 4-nitro-phenyl isocyanate and phenyl isothiocyanate underwent insertion reactions into the M-P bond, however only BDIDIPPAl(Cl)N(4-NO₂-Ph)C(O)P(H)Mes was able to be isolated and fully characterised.  Finally, chapter 5 summarises the results of this research and provides an outlook at the future direction of this field of research.</p>


2021 ◽  
Author(s):  
◽  
Struan Cummins

<p>This thesis describes the synthesis, structures and reactivities of gallium and aluminium complexes supported by β-diketiminato ligands ([CR{C(R)N(R’)}₂]-, abbrev. [(BDIR’)]-).  Chapter 1 gives a general introduction into the trends and properties that distinguish the heavier p-block elements from their lighter counterparts. An introduction into the theory of multiple bond formation, both homonuclear and heteronuclear, in the heavy p-block elements is provided and a summary of the sterically demanding ligands required to stabilise these complexes is introduced. The β-diketiminato ligand framework utilised in this study is introduced and the methods of generation of low valent gallium and aluminium complexes supported by the BDIDIPP ligand are discussed.  Chapter 2 discusses the reactivity of the complex BDIDIPPGa with diazo- compounds in the quest to isolate a complex with a formal gallium-carbon double bond. BDIDIPPGa reacts with two equivalents of both trimethylsilyldiazomethane and diazofluorene, presumably through the target gallium-carbon double bond intermediate. No reaction is observed with di-tert-butyldiazomethane, while BDIDIPPGa catalyses the decomposition of diphenyldiazomethane into tetraphenylethene. Three new β-diketiminato gallium(I) complexes were synthesised: ArBDIDIPPGa, BDIAr*Ga and BDIAr’Ga. ArBDIDIPPGa also reacted with two equivalents of trimethylsilyldiazomethane, presumably through the target gallium-carbon double bond intermediate. BDIAr*Ga and BDIAr’Ga both inserted into the C-H bond of trimethylsilyldiazomethane to give BDIAr*Ga(H)C(N2)SiMe₃ and BDIAr’Ga(H)C(N2)SiMe₃ respectively. Upon addition of diazofluorene to BDIAr*Ga, one of the aromatic protons of the BDIAr* ligand was abstracted by the diazofluorene, resulting in coordination of one of the flanking phenyl groups to the gallium centre.  Chapter 3 discusses an investigation into the formation of formal double bonds between aluminium and phosphorus, and gallium and phosphorus. The proposed ‘deprotonation/elimination’ method, reacting BDIDIPPM(PHAr)Cl (M = Al, Ga Ar = Ph, Mes) with nBuLi, resulted in the formation of intractable mixtures of products. Direct synthesis by the addition of MesPLi₂ to BDIDIPPMCl₂ (M = Al, Ga) resulted in the formation of BDIDIPPM(PHMes)Cl (M = Al, Ga). Changing the elimination product to TMS-Cl, through the synthesis of BDIDIPPM(P(TMS)Ph)Cl (M = Al, Ga), resulted in the synthesis of BDIDIPPAl(P(TMS)Ph)Cl, which showed no signs of elimination occurring upon heating to 110 °C. BDIDIPPGa(P(TMS)Ph)Cl could not be isolated, potentially as the complex was undergoing the desired elimination of TMS-Cl, but the resulting complex was decomposing. Changing the elimination product to ethane, through the synthesis of BDIDIPPAl(PHMes)Et, resulted in no sign of elimination occurring upon heating to 110 °C. Reduction of BDIDIPPMCl₂ (M = Al, Ga) in the presence of bistrimethylsilylacetylene, as part of the synthesis of BDIDIPPMLi₂ (M = Al, Ga) salts, was unsuccessful, as was the reaction of BDIDIPPGa with bistrimethylsilylacetylene. Reduction of MesPCl₂ with potassium metal in the presence of BDIDIPPGa resulted in an intractable mixture of products, reduction with magnesium resulted in the formation of (MesP)₃ and (MesP)₄. Addition of MesPH₂ to BDIDIPPGa resulted in the formation of BDIDIPPGa(H)P(H)Mes, which did not undergo H₂ elimination at 110 °C. The synthesis of BDIDIPPAl was unsuccessful as the product could not be isolated cleanly. The synthesis of ArBDIDIPPAl resulted in the intramolecular rearrangement of the ligand to give a five-membered aluminium containing ring. The synthesis of BDIAr*Al stalled at the formation of BDIAr*Al(Me)I due to the steric bulk of the ligand blocking the second substitution of iodine from occurring.  Chapter 4 discusses the reactivity of the primary phosphanide complexes BDIDIPPAl(PHMes)Cl, BDIDIPPAl(PHMes)Et and BDIDIPPGa(H)P(H)Mes with phenyl acetylene, 4-nitro-phenyl isocyanate, phenyl isothiocyanate, dicyclohexyl carbodiimide, cyclohexene, benzophenone, benzaldehyde, selenium, sulfur, and methyl iodide. Reactivity was not observed for phenyl acetylene, dicyclohexyl carbodiimide or benzophenone with any of the phosphanides. Reactivity with the phosphanides was observed with cyclohexene, however rapid decomposition of the products occurred and they were unable to be identified. BDIDIPPAl(PHMes)Cl and BDIDIPPGa(H)P(H)Mes showed no reactivity with benzaldehyde, however, the ethyl ligand of BDIDIPPAl(PHMes)Et reacted with the aldehyde proton, eliminating ethane and substituting the PhC(O)- ligand onto the aluminium centre. Reactivity with the phosphanides was observed with both sulfur and selenium, however multiple different products were formed, none of which were successfully isolated. Reactivity between the phosphanides and methyl iodide was observed, with the P-M bond appearing to be cleaved and formation of a M-I bond occurring. 4-nitro-phenyl isocyanate and phenyl isothiocyanate underwent insertion reactions into the M-P bond, however only BDIDIPPAl(Cl)N(4-NO₂-Ph)C(O)P(H)Mes was able to be isolated and fully characterised.  Finally, chapter 5 summarises the results of this research and provides an outlook at the future direction of this field of research.</p>


2020 ◽  
Vol 17 (7) ◽  
pp. 525-534 ◽  
Author(s):  
Nevin Arıkan Ölmez ◽  
Faryal Waseer

Background: Urea, thiourea, and 1,2,4-oxadiazole compounds are of great interest due to their different activities such as anti-inflammatory, antiviral, analgesic, fungicidal, herbicidal, diuretic, antihelminthic and antitumor along with antimicrobial activities. Objective: In this work, we provide a new series of potential biologically active compounds containing both 1,2,4-oxadiazole and urea/thiouprea moiety. Materials and Methods: Firstly, 5-chloromethyl-3-aryl-1,2,4-oxadiazoles (3a-j) were synthesized from the reaction of different substituted amidoximes (2a-j) and chloroacetyl chloride in the presence of pyridine by conventional and microwave-assisted methods. In the conventional method, 1,2,4-oxadiazoles were obtained in two steps. O-acylamidoximes obtained in the first step at room temperature were heated in toluene for an average of one hour to obtain 1,2,4-oxadiazoles. The yields varied from 70 to 96 %. 1,2,4-oxadiazoles were obtained under microwave irradiation in a single step in a 90-98 % yield at 160 °C in five minutes. 5-aminomethyl-3-aryl-1,2,4- oxadiazoles (5a-j) were obtained by Gabriel amine synthesis in two steps from corresponding 5-chloromethyl-3- aryl-1,2,4-oxadiazoles. Finally, twenty new urea (6a-j) and thiourea (7a-j) compounds bearing oxadiazole ring were synthesized by reacting 5-aminomethyl-3-aryl-1,2,4-oxadiazoles with phenyl isocyanate and isothiocyanate in tetrahydrofuran (THF) at room temperature with average yields (40-70%). Results and Discussions: An efficient and rapid method for the synthesis of 1,2,4-oxadiazoles from the reaction of amidoximes and acyl halides without using any coupling reagent under microwave irradiation has been developed, and twenty new urea/thiourea compounds bearing 1,2,4-oxadiazole ring have been synthesized and characterized. Conclusion: We have synthesized a new series of urea/thiourea derivatives bearing 1,2,4-oxadiazole ring. Also facile synthesis of 3,5-disubstituted 1,2,4-oxadiazoles from amidoximes and acyl chlorides under microwave irradiation was reported. The compounds were characterized using FTIR, 1H NMR, 13C NMR, and elemental analysis techniques.


1993 ◽  
Vol 214 (3-4) ◽  
pp. 281-289 ◽  
Author(s):  
M.H.M. Janssen ◽  
M. Dantus ◽  
H. Guo ◽  
A.H. Zewail

Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 890
Author(s):  
Mateusz Barczewski ◽  
Olga Mysiukiewicz ◽  
Aleksander Hejna ◽  
Radosław Biskup ◽  
Joanna Szulc ◽  
...  

In this work, thermally expanded vermiculite (TE-VMT) was surface modified and used as a filler for composites with a polylactide (PLA) matrix. Modification of vermiculite was realized by simultaneous ball milling with the presence of two PLA chain extenders, aromatic carbodiimide (KI), and 4,4’-methylenebis(phenyl isocyanate) (MDI). In addition to analyzing the particle size of the filler subjected to processing, the efficiency of mechanochemical modification was evaluated by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The composites of PLA with three vermiculite types were prepared by melt mixing and subjected to mechanical, thermomechanical, thermal, and structural evaluation. The structure of composites containing a constant amount of the filler (20 wt%) was assessed using FTIR spectroscopy and SEM analysis supplemented by evaluating the final injection-molded samples’ physicochemical properties. Mechanical behavior of the composites was assessed by static tensile test and impact strength hardness measurements. Heat deflection temperature (HDT) test and dynamic thermomechanical analysis (DMTA) were applied to evaluate the influence of the filler addition and its functionalization on thermomechanical properties of PLA-based composites. Thermal properties were assessed by differential scanning calorimetry (DSC), pyrolysis combustion flow calorimetry (PCFC), and thermogravimetric analysis (TGA). The use of filler-reactive chain extenders (CE) made it possible to change the vermiculite structure and obtain an improvement in interfacial adhesion and more favorable filler dispersions in the matrix. This translated into an improvement in impact strength and an increase in thermo-mechanical stability and heat release capacity of composites containing modified vermiculites.


Author(s):  
Johanna Rokka ◽  
Eva Schlein ◽  
Jonas Eriksson

Abstract Introduction [11C]UCB-J is a tracer developed for PET (positron emission tomography) that has high affinity towards synaptic vesicle glycoprotein 2A (SV2A), a protein believed to participate in the regulation of neurotransmitter release in neurons and endocrine cells. The localisation of SV2A in the synaptic terminals makes it a viable target for in vivo imaging of synaptic density in the brain. Several SV2A targeting compounds have been evaluated as PET tracers, including [11C]UCB-J, with the aim to facilitate studies of synaptic density in neurological diseases. The original two-step synthesis method failed in our hands to produce sufficient amounts of [11C]UCB-J, but served as an excellent starting point for further optimizations towards a high yielding and simplified one-step method. [11C]Methyl iodide was trapped in a clear THF-water solution containing the trifluoroborate substituted precursor, potassium carbonate and palladium complex. The resulting reaction mixture was heated at 70 °C for 4 min to produce [11C]UCB-J. Results After semi-preparative HPLC purification and reformulation in 10% ethanol/phosphate buffered saline, the product was obtained in 39 ± 5% radiochemical yield based on [11C]methyl iodide, corresponding to 1.8 ± 0.5 GBq at EOS. The radiochemical purity was > 99% and the molar activity was 390 ± 180 GBq/μmol at EOS. The product solution contained < 2 ppb palladium. Conclusions A robust and high yielding production method has been developed for [11C]UCB-J, suitable for both preclinical and clinical PET applications.


Sign in / Sign up

Export Citation Format

Share Document