The role of synoptic systems in the interannual variability of Sahel rainfall

1998 ◽  
Vol 65 (1-2) ◽  
pp. 55-75 ◽  
Author(s):  
L. M. Druyan
2008 ◽  
Vol 21 (5) ◽  
pp. 1083-1103 ◽  
Author(s):  
Hamish A. Ramsay ◽  
Lance M. Leslie ◽  
Peter J. Lamb ◽  
Michael B. Richman ◽  
Mark Leplastrier

Abstract This study investigates the role of large-scale environmental factors, notably sea surface temperature (SST), low-level relative vorticity, and deep-tropospheric vertical wind shear, in the interannual variability of November–April tropical cyclone (TC) activity in the Australian region. Extensive correlation analyses were carried out between TC frequency and intensity and the aforementioned large-scale parameters, using TC data for 1970–2006 from the official Australian TC dataset. Large correlations were found between the seasonal number of TCs and SST in the Niño-3.4 and Niño-4 regions. These correlations were greatest (−0.73) during August–October, immediately preceding the Australian TC season. The correlations remain almost unchanged for the July–September period and therefore can be viewed as potential seasonal predictors of the forthcoming TC season. In contrast, only weak correlations (<+0.37) were found with the local SST in the region north of Australia where many TCs originate; these were reduced almost to zero when the ENSO component of the SST was removed by partial correlation analysis. The annual frequency of TCs was found to be strongly correlated with 850-hPa relative vorticity and vertical shear of the zonal wind over the main genesis areas of the Australian region. Furthermore, correlations between the Niño SST and these two atmospheric parameters exhibited a strong link between the Australian region and the Niño-3.4 SST. A principal component analysis of the SST dataset revealed two main modes of Pacific Ocean SST variability that match very closely with the basinwide patterns of correlations between SST and TC frequencies. Finally, it is shown that the correlations can be increased markedly (e.g., from −0.73 to −0.80 for the August–October period) by a weighted combination of SST time series from weakly correlated regions.


2017 ◽  
Author(s):  
Sergio M. Vicente-Serrano ◽  
Raquel Nieto ◽  
Luis Gimeno ◽  
Cesar Azorin-Molina ◽  
Anita Drumond ◽  
...  

Abstract. We analyzed changes in surface relative humidity (RH) at the global scale from 1979 to 2014 using both observations and ERA-Interim dataset. We compared the variability and trends of RH with those of land evapotranspiration and ocean evaporation in moisture source areas across a range of selected regions worldwide. The sources of moisture for each particular region were identified by integrating different observational data and model outputs into a lagrangian approach. The aim was to account for the possible role of changes in air temperature over land, in comparison to sea surface temperature (SST), on RH variability. Results demonstrate a strong agreement between the interannual variability of RH and the interannual variability of precipitation and land evapotranspiration in regions with continentally-originated humidity. In contrast, albeit with the dominant positive trend of air temperature/SST ratio in the majority of the analyzed regions, the interannual variability of RH in the target regions did not show any significant correlation with this ratio over the source regions. Also, we did not find any significant association between the interannual variability of oceanic evaporation in the oceanic humidity source regions and RH in the target regions. Our findings stress the need for further investigation of the role of both dynamic and radiative factors in the evolution of RH over continental regions at different spatial scales.


Ecology ◽  
2012 ◽  
Vol 93 (1) ◽  
pp. 180-190 ◽  
Author(s):  
Catherine M. Hulshof ◽  
James C. Stegen ◽  
Nathan G. Swenson ◽  
Carolyn A. F. Enquist ◽  
Brian J. Enquist

2018 ◽  
Vol 31 (17) ◽  
pp. 6687-6710 ◽  
Author(s):  
Roberto Suárez-Moreno ◽  
Belén Rodríguez-Fonseca ◽  
Jesús A. Barroso ◽  
Andreas H. Fink

The atmospheric response to global sea surface temperatures is the leading cause of rainfall variability in the West African Sahel. On interannual periodicities, El Niño–Southern Oscillation, the Atlantic equatorial mode, and Mediterranean warm/cold events primarily drive variations of summer rainfall over the Sahel. Nevertheless, the rainfall response to these modes of interannual SST variability has been suggested to be unstable throughout the observational record. This study explores changes in the leading patterns of covariability between Sahel rainfall and SSTs, analyzing the dynamical mechanisms at work to explain the nonstationary relationship between anomalies in these two fields. A new network of rain gauge stations across West Africa is used for the first time to investigate these instabilities during the period 1921–2010. A hypothesis is raised that the underlying SST background seems to favor some interannual teleconnections and inhibit others in terms of the cross-equatorial SST gradients and associated impacts on the location of the intertropical convergence zone. Results of this study are relevant for improving the seasonal predictability of summer rainfall in the Sahel.


2004 ◽  
Vol 130 (602) ◽  
pp. 2459-2474 ◽  
Author(s):  
J. Ma ◽  
D.W. Waugh ◽  
A.R. Douglass ◽  
S.R. Kawa ◽  
P.A. Newman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document